

Katedra i Zakład Chemii Farmaceutycznej Uniwersytetu Medycznego im. Karola Marcinkowskiego w Poznaniu

Anna Krause

Trwałość N-[(morfolino)metyleno]daunorubicyny w roztworach wodnych

Rozprawa na stopień doktora nauk farmaceutycznych

Promotor: prof. dr hab. Anna Jelińska

Praca finansowana ze środków na naukę w latach 2008-2011 jako projekt badawczy nr N N405 179535

Poznań 2011

Słowa kluczowe: *N*-[(morfolino)metyleno]daunorubicyna, HPLC, trwałość w roztworach wodnych, parametry kinetyczne i termodynamiczne

Dziękuję Pani prof. dr hab. Annie Jelińskiej za umożliwienie wykonania pracy doktorskiej, kierownictwo naukowe, za cierpliwość, poświęcony czas, przekazaną wiedzę, doświadczenie i ogromną życzliwość

Dziękuję Pani prof. dr hab. Mariannie Zając za cenne wskazówki, wszechstronną pomoc i okazaną życzliwość

Wszystkim pracownikom Katedry i Zakładu Chemii Farmaceutycznej za serdeczną atmosferę i życzliwość, która towarzyszyła mi podczas prowadzonych badań

> Dziękuję Pani prof. dr hab. Jadwidze Mielcarek za okazaną pomoc i cenne rady

Pani Doc. dr hab. Irenie Oszczapowicz z Zakładu Antybiotyków Modyfikowanych Instytutu Biotechnologii i Antybiotyków w Warszawie za udostępnienie substancji do badań

Pracę dedykuję Rodzicom i Piotrkowi

SPIS TREŚCI

1.	Wstęp	9
2.	Część teoretyczna	13
2.1. 2.1.	. Antybiotyki antracyklinowe i mechanizm ich działania	13 15
2.1	.2. Wiazanie kowalencyjne z DNA	16
2.1	.3. Wytwarzanie reaktywnych form tlenu	16
2.1	.4. Wpływ na aktywność enzymów	18
2.2.	. Modyfikacje antybiotyków antracyklinowych	18
2.2.	.1. Chlorowodorek <i>N</i> -[(morfolino)metyleno]daunorubicyny	27
2.3.	Antybiotyki antracyklinowe stosowane w terapii	28
2.4	. Badania trwałości	31
2.5.	1 Metodologia analityczna	33
2.5.	.1 Metody oceny jakości daunorubicyny według Farmakopei Polskiej VIII =	20
25	2 Inno chromatograficzna metody oznaczania daunorubicymy	39
2.3	.2 Inne chromatogranczne metody oznaczama daunorubicyny	42
3.	Cel pracy	45
4.	Część doświadczalna	47
4.1	. Substancja do badań	47
4.2	. Odczynniki	47
4.3	. Wzorzec wewnetrzny	48
4.4	. Roztwory do podania parenteralnego	48
4.5	. Aparatura i sprzęt pomiarowy	49
4.6	. Metody analityczne stosowane w badaniach trwałości MMD	50
4.6	.1 Metoda HPLC	51
4.6	.2 Metoda UV-VIS	55
4.7.	. Ocena trwałości MMD w roztworach wodnych	57
4.8	. Ocena trwałości MMD w roztworach do podania parenteralnego	88
4.9	. Ocena trwałości MMD w razie stałej	100
4.10	0. Ocena fototrwałości MMD w roztworach wodnych	113
5.	Omówienie i dyskusja wyników	121
6.	Wnioski	143
7	Stroszczonia	1/5
1.		14J
i	Summary	149
8.	Piśmiennictwo	153

1. WSTĘP

Szybki rozwój nauk biologicznych ułatwił poznanie procesów fizjologicznych na poziomie komórkowym i molekularnym. Przyspieszyło to w znaczny sposób projektowanie oraz syntezę nowych substancji czynnych, prawdopodobnych leków. Jednak zanim taki związek trafi na rynek może minąć nawet 15 lat, a tylko 1–2 cząsteczek z 10 000 badanych będą udostępnione pacjentom w postaci leku. Przyczyną tego jest m.in. konieczność zapewnienia odpowiedniej jakości substancji leczniczej, która warunkuje skuteczność i bezpieczeństwo stosowania leku.

Zanim związek dopuszczony zostanie do I fazy badań klinicznych, niezbędne jest poznanie jego właściwości fizykochemicznych, toksyczności, trwałości oraz struktury i właściwości jego potencjalnych produktów rozkładu. Jest to konieczne dla zapewnienia, że dana cząsteczka jest bezpieczna dla ludzi. Dlatego tak bardzo istotnym fragmentem szeroko zakrojonych badań jest określenie trwałości nowego związku.

Ze względu na wysoki odsetek pacjentów umierających na choroby nowotworowe, nowe leki przeciwnowotworowe pozostają ciągle w grupie leków intensywnie projektowanych, modyfikowanych i badanych. Choroby nowotworowe są trzecią pod względem częstotliwości, po chorobach infekcyjnych i pasożytniczych oraz po chorobach układu krążenia, przyczyną zgonów na świecie [1].

Zasadniczą przyczyną powstawania nowotworów są zaburzenia kontroli wzrostu, różnicowania i dojrzewania komórek w organizmie. Pojawiające się komórki posiadają odmienne niż komórki prawidłowe cechy biologiczne i morfologiczne oraz dodatkowo cechują się zdolnością do rozsiewu. W każdym procesie transformacji nowotworowej występują albo zmiany chromosomowe, albo zmiany mutacyjne genów. Spowodowane są one w dużej mierze czynnikami środowiskowymi, najczęściej mutagenami. Cały etap rakowacenia ma polietiopatogenetyczne podłoże i składa się z wielu etapów [2]. Na etapie inicjacji, promocji jak też progresji nowotworu może nastąpić zahamowanie, przyspieszenie tempa wzrostu lub też całkowita jego regresja. Czas trwania poszczególnych etapów może być różny, a na ich przebieg wpływ mają czynniki etiologiczne wewnątrzustrojowe (np. karcynogeny chemiczne, fizyczne – promieniowanie jonizujące, biologiczne – zakażenia wirusowe) oraz wewnątrzustrojowe (np. ogólny stan organizmu, wiek, sprawność enzymów naprawczych DNA). Zasadniczy wpływ na przebieg transformacji nowotworowej mają również tzw. czynniki wzrostu oraz związane z nimi onkogeny komórkowe, które odpowiedzialne są za prawidłowe, jak też nowotworowe mechanizmy proliferacji i różnicowania tkanek [2].

Nowotwory konkurują z normalnymi komórkami i tkankami o zaspokajanie swoich potrzeb metabolicznych. Mogą rozwijać się u pacjentów, u których jednocześnie następuje wyniszczenie. Nowotwory mają również pewien stopień autonomii i wzrastają mniej lub bardziej równomiernie, niezależnie od środowiska i stanu odżywienia gospodarza, są jednak zależne od gospodarza pod względem odżywienia i zaopatrzenia w krew [3].

Ze względu na potencjalne kliniczne zachowanie się nowotworów wyróżnia się nowotwory łagodne oraz nowotwory złośliwe. Nowotwory łagodne są względnie niegroźne, nie ulegają rozprzestrzenianiu, rozwijają się wolno i z reguły można je usunąć chirurgicznie. Nowotwory złośliwe mogą naciekać i niszczyć otaczające struktury, rozprzestrzeniać się, tworzyć przerzuty i powodować śmierć [3]. Zarówno jedne jak i drugie, utworzone są z dwóch podstawowych komponentów: miąższu, który zbudowany jest z transformowanych lub nowotworowych komórek oraz z podtrzymującego nienowotworowego zrębu pochodzącego od gospodarza, zbudowanego z tkanki łącznej i naczyń krwionośnych.

Wśród metod leczenia nowotworów możemy wyróżnić [4]:

- leczenie chirurgiczne
- radioterapię
- chemioterapię, hormonoterapię i immunoterapię
- terapię genową (w fazie badań klinicznych)

Rola każdego typu leczenia zależy od stopnia zaawansowania oraz od rodzaju nowotworu.

Zabieg chirurgiczny jest najstarszą formą leczenia nowotworów i polega na wycięciu guza z marginesem tkanek zdrowych. Zabieg ten może dotyczyć zarówno wąskiego obszaru tkanek, jak i poważnych, często okaleczających zabiegów chirurgicznych [5]. Leczenie chirurgiczne nowotworów jest zazwyczaj częścią leczenia skojarzonego, które jest wymagane w przypadku większości nowotworów w postaci inwazyjnej. W przypadku wczesnych postaci nowotworów, zabieg chirurgiczny może być jedynym sposobem postępowania, często jednak wspomagany jest innym sposobem leczenia miejscowego, jakim jest radioterapia.

Radioterapia jest sposobem leczenia miejscowego nowotworów za pomocą promieniowania jonizującego. Do tego celu używa się na przykład promieni Roentgena, gamma, radu czy kobaltu. Ze względu na sposób napromieniania wyróżniamy teleterapię (źródło promieniowania jest umieszczone w pewnej odległości od guza) oraz brachyterapię (źródło promieniowania – izotop – jest umieszczony w bezpośredniej bliskości guza lub obszaru po wyciętym guzie) [6]. Zastosowanie tej formy leczenia jest ściśle uzależnione od rodzaju nowotworu, lokalizacji, stopnia zaawansowania choroby i stanu pacjenta.

Metoda szeroko stosowana współcześnie jest chemioterapia. Jej rola, jako samodzielnej metody leczenia nowotworów zdaje się mieć coraz mniejsze znaczenie, ze względu np. na rosnącą oporność komórek nowotworowych na leki, jednak wzrasta jej znaczenie jako terapii wspomagającej leczenie chirurgiczne i radioterapię [7]. Leki cytostatyczne wprowadzone do organizmu działają na wszystkie żywe komórki - nowotworowe i prawidłowe - proporcjonalnie do szybkości wzrostu i dzielenia się komórek. Najlepiej działają w przypadku tych nowotworów, których szybkość wzrastania jest duża, większa niż komórek prawidłowych. Problemem w chemioterapii jest więc brak swoistości działania, toksyczność oraz nieznajomość czynnika etiologicznego wywołującego chorobę [8]. W leczeniu stosuje się najczęściej kilka leków cytostatycznych jednocześnie, różniacych się mechanizmem działania i toksycznością. Każdy z leków powinien działać na inną fazę życiową cyklu komórkowego. Wykorzystanie zasad kinetyki komórkowej pozwala także na tworzenie programów chemioterapii wielolekowej. Zastosowanie tej formy terapii umożliwia maksymalne niszczenie w zakresie możliwej do zaakceptowania toksyczności, szersze spektrum w guzach heterogennych, prewencję rozwoju linii komórkowych opornych na cytostatyki [7]. Obecnie w terapii nowotworów stosuje się około 100 leków o różnych mechanizmach działania [4]:

- leki alkilujące DNA i RNA
- antymetabolity cytostatyczne
- inhibitory topoizomerazy DNA
- antybiotyki
- alkaloidy, toksoidy i lignany wpływające na proces mitozy
- cytostatyki o innej budowie i działaniu
- antyhormony i hormony
- immunoterapeutyki

Ważną grupę leków wśród antybiotyków cytostatycznych stanowią interkalatory. Mechanizm ich działania związany jest z ich oddziaływaniem z łańcuchem DNA komórki nowotworowej. Płaska budowa oraz występowanie kilku skondensowanych pierścieni aromatycznych lub heteroaromatycznych jest najczęściej występującą cechą w tych związkach. Często w ich budowie występują łańcuchy aminoalifatyczne, które pełnią ważną rolę w procesie wiązania z helisą DNA. Wszystkie interkalatory są cząsteczkami polarnymi o dużej delokalizacji ładunku. W przeciwieństwie do zasad nukleotydów są dobrymi akceptorami elektronów [9]. Do tego typu związków należą antybiotyki antracyklinowe, które odznaczają się wysoką aktywnością wobec wielu typów nowotworów, jednak ich użycie bywa często ograniczone z powodu występowania wielu działań niepożądanych. Jednym z najgroźniejszych jest toksyczność oraz zależna od zastosowanej dawki kardiotoksyczność, prowadząca do nieodwracalnej kardiomiopatii [10]. Stosowanie antybiotyków antracyklinowych prowadzi również do ostrej toksyczności w stosunku do szpiku kostnego, oraz narastającej stopniowo oporności na te leki [11]. Niemniej jednak leki wykazujące ten mechanizm działania stanowią bardzo ważną grupę chemioterapeutyków, a otrzymywane nowe pochodne mogą tylko umocnić ich pozycję we współczesnej onkologii.

2. CZĘŚĆ TEORETYCZNA

2.1. Antybiotyki antracyklinowe i mechanizm ich działania

Jedną z głównych grup leków stosowanych w chemioterapii nowotworów są leki interkalujące DNA, a wśród nich antybiotyki antracyklinowe. Są to związki wyizolowane z grzybów *Streptomyces* oraz ich pochodne, otrzymane w wyniku syntezy chemicznej. Do związków najlepiej poznanych należy daunorubicyna i doksorubicyny [4]. Posłużyły one do zsyntetyzowania około stu analogów [12, 13].

Ze względu na budowę chemiczną, antybiotyki antracyklinowe dzieli się na [14]:

- antracykliny I klasy (doksorubicyna, daunorubicyna, epirubicyna, idarubicyna, pirarubicyna, zorubicyna, carubicyna, esorubicyna, jododoksorubicyna), w cząsteczce których występuje układ hydrochinonu w pierścieniu B aglikonu, boczny łańcuch w pozycji C–13 pierścienia A oraz monosacharydowa część cukrowa.
- antracykliny II klasy (aklarubicyna, marcellomycyna), które w swojej budowie chemicznej posiadają monofenolową grupę w pierścieniu B, łańcuch alkilowy w pierścieniu A aglikonu oraz część cukrową zbudowaną z dwóch lub trzech cząsteczek monosacharydów, połączonych wiązaniami *O*-glikozydowymi.

	\mathbf{R}_{1}	\mathbf{R}_2	\mathbf{R}_3	\mathbf{R}_4	R ₅
Doksorubicyna	0	OH	OCH ₃	Н	OH
Epirubicyna	0	OH	OCH ₃	OH	Н
Daunorubicyna	0	Η	OCH ₃	Н	Н
Idarubicyna	0	Η	Н	Н	OH
Pirarubicyna	0	OH	OCH ₃	Н	OC ₅ H ₉ O
Zorubicyna I	NNHCOC ₆ H ₅	Η	OCH ₃	Н	OH
Carubicyna	0	Η	OH	Н	OH
Esorubicyna	0	OH	OCH ₃	Н	Н
Jododoksorubicy	ma O	OH	OCH ₃	Н	Ι

Rycina 1. Struktura chemiczna antracyklin I klasy [14].

W budowie chemicznej daunorubicyny wyróżnić można aglikon połączony wiązaniem glikozydowym z aminocukrem daunozaminą [15]. Aglikon stanowią cztery sześcioczłonowe pierścienie (oznaczane jako A – D), spośród których dwa (B i D) są aromatyczne. W pozycjach C-6 i C-11 pierścienia B występują grupy hydroksylowe, natomiast w pierścieniu C układ chinonu. Pierścienie B, C i D tworzą antrachinonowy chromofor. W niearomatycznym pierścieniu A, w położeniu C-7, znajduje się daunozamina, natomiast przy C-9 obecna jest grupa hydroksylowa oraz łańcuch boczny –CO-CH₃. W pierścieniu D w pozycji C-4 występuje grupa metoksylowa. W cząsteczce tego antybiotyku antracyklinowego można wyróżnić dwa asymetryczne atomy węgla w aglikonie: C-7 i C-9, a także cztery takie atomy w daunozaminie: C-1', C-3', C-4' i C-5' [16].

Za wszystkie obserwowane kliniczne i komórkowe efekty nie są odpowiedzialne tylko pojedyncze mechanizmy. Sposób działania antracyklin jest bardzo skomplikowany, ale występuje wiele dowodów na to, że ich głównym celem działań jest DNA. Występowanie płaskiego fragmentu cząsteczki prawdopodobnie determinuje mechanizm działania daunorubicyny i, choć jest on nadal przedmiotem sporów, przyjmuje się, że polega on na interkalacji DNA, inhibicji topoizomerazy II, a także na tworzeniu wolnych rodników.

2.1.1. Interkalacja DNA

Kwas dezoksyrybonukleinowy jest polimerem zbudowanym z nukleotydów, w skład których wchodzi zasada azotowa, cukier deoksyryboza oraz reszta kwasu fosforowego. Zasadami azotowymi są pochodne puryny (adenina i guanina) lub pirymidyny (tymina i cytozyna). DNA zbudowane jest z dwóch helikalnych łańcuchów polinukleotydowych oplatających wspólną oś. Łańcuchy te biegną w przeciwnych kierunkach. Zasady azotowe znajdują się wewnątrz, a fosforany i reszty deoksyrybozy na zewnątrz, co związane jest z hydrofilowością poszczególnych elementów. Dwa łańcuchy łacza się ze soba wiazaniami wodorowymi między zasadami tworzącymi komplementarne pary. Najważniejszą cechą dwuniciowej helisy DNA jest specyficzność parowania zasad. Ze względu na czynniki przestrzenne i możliwość powstania wiązań wodorowych adenina tworzy parę z tymina, a guanina z cytozyną. Kolejność ułożenia zasad determinuje w jednoznaczny sposób informację genetyczną zawartą w DNA, jednocześnie wpływając na jego strukturę przestrzenną [17]. Dotychczas opisano sześć postaci DNA. Formy te różnią się zasadniczo od siebie, jednak większość z nich występuje tylko w rygorystycznych warunkach laboratoryjnych. W warunkach fizjologicznych najczęściej występuje forma B DNA. Zbudowana jest ona z dwóch antyrównoległych łańcuchów tworzących prawoskrętną helisę, na powierzchni której występują dwie równoległe bruzdy o podobnej długości lecz innej szerokości. Wnetrze tych bruzd, zwanych małym i dużym rowkiem, różni się rozkładem molekularnego potencjału elektrostatycznego, który warunkuje oddziaływanie elektrostatyczne z innymi cząsteczkami [18]. Rowki różnią się ponadto ilością i sposobem rozmieszczenia grup funkcyjnych zdolnych do tworzenia wiązań wodorowych. Różnice te mają duży wpływ na oddziaływanie B DNA z białkami, lekami i innymi cząsteczkami [19, 20].

Opisana powyżej budowa DNA determinuje budowę i sposób działania antybiotyków antracyklinowych. Płaska struktura układu aromatycznego umożliwia wnikanie cząsteczki pomiędzy pary zasad DNA z aminocukrem położonym w mniejszym rowku [21]. Interkalacyjne kompleksy z DNA tworzą się w miejscach sekwencji 5'-GC-3' i 5'-CG-3' [22]. Powoduje to wydłużenie się struktury helisalnej oraz jednoczesną zmianę elastyczności. Odległość pomiędzy zasadami rośnie z 3,4 Å do 6,8 Å [23], podczas gdy skręcenie warstw utworzonych przez płaszczyzny sąsiadujących zasad zmniejsza się o 11° [24]. Wszystkie te zmiany powodują zniekształcenie struktury DNA oraz jej relaksację. Powstały kompleks stabilizują wiązania wodorowe i siły elektrostatyczne, pomiędzy antybiotykiem a częścią fosforanową sąsiadujących nukleotydów, przez co połączenie interkalator – zasada jest trwalsze niż pomiędzy parami zasad [25, 26, 27]. Powoduje to zanik zdolności replikacyjnych i transkrypcyjnych DNA. Udowodniono również, że pochodne daunorubicyny, które nie posiadają grupy OH w pozycji C9 nie są zdolne do tworzenia wiązań wodorowych, co powoduje pozbawienie ich aktywności przeciwnowotworowej [28].

2.1.2. Wiązanie kowalencyjne z DNA

Częstym etapem następującym po interkalacji jest kowalencyjne wiązanie z DNA. Zdolność do tworzenia wiązań kowalencyjnych uzależniona jest od budowy antybiotyków antracyklinowych. Antracykliny, które nie mają grupy aminowej w pozycji C-3', nie mają zdolności tworzenia wiązań kowalencyjnych [29]. Nieistotna natomiast, dla powstawania wiązań kowalencyjnych, jest stereochemia tej grupy [30].

Mechanizm tworzenia wiązań kowalencyjnych w przypadku antybiotyków antracyklinowych uwarunkowany jest obecnością formaldehydu lub, w przypadku niektórych pochodnych, obecnością grupy aldehydowej [31, 32]. Wykazano, że wiązania kowalencyjne tworzone przez antracykliny wymagające obecności formaldehydu są słabsze w porównaniu do tych, które w swojej budowie posiadają grupę aldehydową.

W powstawaniu formaldehydu w warunkach *in vivo* brane są pod uwagę następujące mechanizmy: autokatalityczna oksydacja w pozycji C-12 z udziałem H_2O_2 oraz utlenianie występujących z DNA poliamin (np. sperminy) przez rodniki hydroksylowe [31, 33, 34]. Każdy z tych mechanizmów zależy od zdolności wiązania jonów żelaza(III) i od komórkowego potencjału redukcyjnego, wymaganego w reakcjach prowadzących po powstania reaktywnych form tlenu.

2.1.3. Wytwarzanie reaktywnych form tlenu

Cechą charakterystyczną reaktywnych form tlenu jest posiadanie dodatkowego elektronu, który mogą oddać, działając jak reduktor lub przyłączyć dodatkowy elektron, stając się utleniaczem. Wytwarzanie reaktywnych form tlenu jest jednym z elementów metabolizmu komórek. Jego zaburzenie może prowadzić do uszkodzenia wielu ważnych makrocząsteczek komórkowych, takich jak DNA, białka i lipidy [35, 36]. Zdolność ta stwarza możliwość do zwalczania komórek nowotworowych [37]. Antracykliny łatwo ulegają redukcji jednoelektronowej, powodując wytwarzanie rodników semichinonowych. Otrzymany elektron przekazywany jest na tlen cząsteczkowy, w wyniku czego powstaje anionorodnik ponadtlenkowy, a związek antracyklinowy powraca do macierzystej formy chinonowej [38].

Rycina 2. Enzymatyczny mechanizm powstawania anionorodnika ponadtlenkowego w następstwie redukcji jednoelektronowej daunorubicyny [38].

Powstanie anionorodnika ponadtlenkowego uruchamia kaskadę reakcji wolnorodnikowych, których produktami są silnie toksyczny nadtlenek wodoru i rodnik hydroksylowy [39], zdolne do indukowania rozpadu nici DNA.

Innym, nieenzymatycznym sposobem tworzenia rodników przez antracykliny jest utworzenie kompleksu z jonami żelaza(III). W tak utworzonym połączeniu dochodzi do redukcji żelaza do +2 stopnia utlenienia, co umożliwia przeniesienie elektronu na tlen cząsteczkowy i tworzenie anionorodników ponadtlenkowych, podobnie jak w reakcjach enzymatycznych [40, 41]. Żelazo odgrywa również rolę jako katalizator w reakcji Fentona, w wyniku której powstaje rodnik hydroksylowy [42].

Wszystkie reaktywne formy tlenu doprowadzają do uszkodzeń lipidów, białek, DNA, a także biorą udział w przekazywaniu sygnałów komórkowych odpowiedzialnych za procesy zapalne, regulujące podziały oraz apoptozę [41]. Ten mechanizm działania nie jest wybiórczy dla komórek nowotworowych, co powoduje, że np. komórki mięśnia sercowego, zawierające stosunkowo niski poziom antyoksydantów, są szczególnie podatne na stres oksydacyjny. Peroksydacja lipidów mięśnia sercowego powoduje apoptozę kardiomiocytów i prowadzi do niewydolności serca [43, 44, 45, 46]. W celu zapobiegnięcia powstawaniu kardiomiopatii pacjentom podaje się m.in.: adenozynę, witaminę E, karnitynę, prednizon, koenzym Q₁₀ lub deksrazoksan (CARDIOXANE) [4, 47]. Opracowuje się także nowe pochodne z obniżoną kardiotoksycznością lub podaje się liposomalne formy, co pozwala na zwiększenie dostępności biologicznej substancji leczniczej, poprawę stabilności oraz zmniejszenie toksyczności w stosunku do komórek prawidłowych [48, 49, 50, 51].

2.1.4. Wpływ na aktywność enzymów

Mechanizm działania antracyklin powoduje zmiany w strukturze DNA. Zmiany te warunkują zaburzenia w funkcjonowaniu enzymów mających znaczenie w replikacji i ekspresji genów. Znana jest zdolność antybiotyków antracyklinowych do hamowania aktywności polimerazy DNA, chociaż mechanizm tego zjawiska nie jest dokładnie zbadany [52]. Przyjmuje się, że może on być związany z przejściowym, cytostatycznym działaniem tych związków oraz z zahamowaniem wzrostu komórek i rolą białka p53 [53, 54]. Wykazano również, że antracykliny wiążąc się kowalencyjnie z DNA, blokują process transkrypcji poprzez blokowanie polimerazy RNA, która przerywa syntezę [55].

W cyklu komórkowym oraz w aktywności transkrypcyjnej ogromne znaczenie mają topoizomerazy I i II. Są one odpowiedzialne za relaksację DNA podczas replikacji, transkrypcji, rekombinacji i naprawy [56]. Szczególnie ważną rolę odgrywają antracykliny w blokowaniu topoizomerazy II, która odpowiada za przecięcie jednocześnie dwóch łańcuchów DNA. Kowalencyjny, nieaktywny biologicznie kompleks antracyklina – DNA – topoizomeraza II uniemożliwia ponowne połączenie nici DNA, co prowadzi do ich fragmentacji, a tym samym do śmierci komórki [57, 58]. Antracykliny poprzez interkalację, biorą również udział w hamowaniu helikazy. Powodują stabilizację drugorzędowej struktury DNA, uniemożliwiając helikazie katalizowanie rozerwania wiązań wodorowych pomiędzy komplementarnymi zasadami, a tym samym blokują rozplatanie nici DNA [23, 59].

2.2. Modyfikacje antybiotyków antracyklinowych

Planowanie i synteza nowych analogów jest jednym z kierunków prowadzonych badań mających na celu zwiększenie skuteczności oraz minimalizację działania kardiotoksycznego w grupie antybiotyków antracyklinowych. Decydujące znaczenie w pozyskiwaniu nowych substancji aktywnych mają metody syntezy chemicznej.

Liczba syntetycznych analogów daunorubicyny i doksorubicyny wynosi kilka tysięcy związków, ale tylko nieliczne spośród nich dotarły do fazy rejestracyjnej i wprowadzenia na rynek. Założenia modyfikacji strukturalnych oraz coraz większa liczba danych z obszaru biochemii i farmakologii molekularnej nowotworów powodują, że z coraz lepszym skutkiem możliwe jest kontrolowanie następujących czynników:

- odporność wiązania glikozydowego na hydrolizę chemiczną i enzymatyczną
- obecności i położenia centrum zasadowego w części cukrowej
- wpływu na selektywność wiązania z DNA
- wpływu na intensywność wiązania z określonymi sekwencjami DNA, przez powtórzenie farmakoforowego elementu struktury (bis–interkalatory) [60, 61].

Tabela 1. Przykłady niektórych modyfikacji antybiotyków antracyklinowych [16, 62, 63, 64]

MODYFIKA	ACJE W CZĄSTECZCE AGLIKONU	$\begin{array}{c} & \begin{array}{c} & \begin{array}{c} & \\ & \\ 2 \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\$
Pozycja	Modyfikacja	Skutek modyfikacji
C-1 i C-2	Wprowadzenie w pozycji C-1 grupy COCH ₃ przy jednoczesnej obecności w położeniu C-3' grupy NH ₂ , OH lub reszty morfoli- nowej	Spadek aktywności <i>in vitro</i> wobec linii białaczki L1210
	Wprowadzenie w pozycji C-1 i C-2 fragmentu aminokwasu, reszta cukrowa przyłączona do pierścienia A, grupa COOCH ₃ w położeniu C-10 (nogalamycyny)	Znaczna aktywność przy jedno- czesnej małej stabilności
	Obecność czwartorzędowego atomu azotu daunozaminy w noga- lamycynach (disnogalamycyny)	Wzrost aktywności i stabilności w stosunku do nogalamycyny
	Wprowadzenie w pozycji C-1 i C-2 fragmentu aminokwasu, brak podstawników w pozycji C-10 i reszty cukrowej w pozycji C-7 (nogarole)	Obniżenie aktywności i zwięk- szenie stabilności
	Wprowadzenie grupy hydroksylowej w pozycji C-1	zwiększenie cytotoksyczności in vitro
	Wprowadzenie grupy hydroksylowej w pozycji C-2	Obniżenie aktywności <i>in vitro</i> , przy jednoczesnym wzroście aktywności <i>in vivo</i>
	Wprowadzenie grupy metylowej lub atomu chloru w pozycję C-1 i C-2	Obniżenie aktywności in vitro
	Podstawienie w pozycji C-2 grupą metoksylową	Umiarkowana aktywność prze- ciwnowotworowa
C-3	Wprowadzenie grupy metylowej lub atomu chloru w pozycję C-3	Obniżenie aktywności in vitro
C-4	Podstawienie atomu węgla C-4 atomem wodoru	Znaczne (100 – 200 krotne w zależności od związku) zwięk-

		szenie aktywności biologicznej
	Podstawienie atomu węgla C-4 w daunorubicynie grupą hydrok- sylową	Duża aktywność in vitro i in vivo
	Zastąpienie grupy metoksylowej w pozycji C-4 daunorubicyny i doksorubicyny inną grupą alkoksylową lub wydłużenie łańcucha alkilowego w tych grupach	Brak wzrostu aktywności prze- ciwnowotworowej
	Wprowadzenie atomu fluoru w pozycji C-4 daunorubicyny	Zwiększenie aktywności <i>in vivo</i> wobec białaczki P388 (w po- równaniu do idarubicyny)
	Wprowadzenie dwóch atomów fluoru w pozycji C-1 i C-4	Zmniejszenie aktywności in vivo
C-5	Wprowadzenie grupy NH w pozycji C-5 daunorubicyny lub doksorubicyny	Zmniejszona kardiotoksyczność przy równoczesnym obniżeniu aktywności przeciwnowotwo- rowej
	Wprowadzenie atomu wodoru w pozycję C-5 daunorubicyny	Duża aktywność przeciwnowo- tworowa
	Wprowadzenie atomu azotu w pozycję C-5 i C-12 daunorubicyny i doksorubicyny	Znaczna aktywność przeciw- nowotworowa
C-6	Wprowadzenie atomu wodoru w pozycję C-6 przy jednoczesnym wprowadzeniu grupy hydroksylowej w pozycję C-4 i C-13	Wzrost aktywności w stosunku do daunorubicyny i doksorubi- cyny
	Wprowadzenie grupy metoksylowej w pozycję C-6	Spadek aktywności przeciwno- wotworowej, zanik zdolności do tworzenia adduktów z DNA
C-7	Przyłączenie drugiej cząsteczki antracyklin poprzez grupę arylo- wą, cykloalkilową lub heterocykliczną	Zwiększenie aktywności prze- ciwnowotworowej zarówno wobec nowotworów wrażli- wych, jak też opornych na dzia- łanie antracyklin. Przełamanie bariery lekooporności in vitro
C-8	Wprowadzenie grupy metoksylowej w pozycję C-8 daunorubicy- ny	Brak zmian w aktywności bio- logicznej
	Wprowadzenie grupy metoksylowej w pozycję C-8, C-2, C-2', C-4', grupy hydroksylowej w pozycję C-4, C-6, C-9 i C-3' oraz grupy CH_3 w położenie C-9 (steffimycyna B)	Umiarkowana aktywność prze- ciwnowotworowa
	Wprowadzenie atomu fluoru w pozycję C-8	Brak zmian w aktywności bio- logicznej
	Wprowadzenie grupy hydroksylowej w pozycję C-8 daunorubi- cyny i epirubicyny	Wzrost aktywności, zmniejsze- nie toksyczności oraz wystąpie- nie zdolności do przełamania bariery oporności i <i>n vitro</i> (sła- biej zaznaczone dla pochodnej epirubicyny)
	W położeniu C-8 zamiast atomu węgla atom tlenu, siarki lub też grupy SO, SO ₂ , NH ₂	Związki wysoce aktywne in vivo

C-9	Wprowadzenie grupy NH_2 w pozycję C-9, grupy hydroksylowej w położenie C-3', atomu wodoru w położenie C-4 (amrubicyna)	Wzrost aktywności przeciwno- wotworowej		
	Wprowadzenie grupy CH ₂ CH ₃ w pozycję C-9 (oksaunomycyna)	Wzrost aktywności przeciwno- wotworowej <i>in vitro</i> wobec linii białaczki L1210		
	Zastąpienie grupy OH w pozycji C-9 grupą aminową, przy jed- noczesnym wprowadzeniu w położeniu C-14 grupy β-aminoetylowej, fluoru w pozycję C-2', grupy hydroksylowej w pozycję C-3'	Duża aktywność wobec nowo- tworów opornych na działanie doksorubicyny		
	Podstawienie atomu węgla w pozycji C-9 grupą acetylową lub hydroksyacetylową	Obniżenie aktywności w sto- sunku do związków zawierają- cych w tej pozycji atom wodoru lub grupę hydroksylową		
	Zwiększenie długości łańcucha alkilowego w pozycji C-9	Spadek aktywności biologicz- nej		
	Wprowadzenie układu heterocyklicznego w pozycję C-9	Zmniejszona aktywność w stosunku do związków referen- cyjnych		
	Zastąpienie grupy OH w pozycji C-9 atomem wodoru	Obniżenie aktywności przeciw- nowotworowej		
	Wprowadzenie w pozycję C-9 grupy etylowej lub acetylomety- lowej	Obniżenie aktywności przeciw- nowotworowej w stosunku do daunorubicyny		
	Wprowadzenie grupy CH ₃ w pozycję C-9	Brak wzrostu aktywności w stosunku do innych antracyklin		
	Etylowanie grupy OH w pozycji C-9	Zmniejszenie aktywności in vitro		
C-10	Modyfikacja tej pozycji wykazuje najbardziej widoczne efekty biologiczne. Porównanie $10(S)$ i 10 (<i>R</i>)-metoksypochodnych wykazało, że kluczową rolę odgrywa stereochemia. $10(S)$ pochodne okazały się nieaktywne, podczas gdy $10(R)$ wykazywały aktywność zbliżoną do daunorubicyny			
	Wprowadzenie w pozycję C-10 grupy karbonylometoksylowej lub metoksylowej	Obniżenie aktywności przeciw- nowotworowej w stosunku do związków macierzystych		
	Wprowadzenie grupy COOH w pozycję C-10	Aktywność przeciwnowotwo- rowa zbliżona do związku refe- rencyjnego		
	Podstawienie pozycji C-10 cząsteczką daunozaminy	Duża aktywność antyprolifera- cyjna wobec linii białaczki L1210		
	Podstawienie pozycji C-10 fluorem	Mniejsza aktywność w stosun- ku do związków macierzystych		
	Wprowadzeni grupy COOCH ₃ oraz disacharydu w pozycję C-4', przy jednoczesnej zmianie grupy OH w położeniu C-11 na atom wodoru oraz podstawieniu grupy NH ₂ w pozycji C-3' grupa di	Duża aktywność przy obniżonej kardiotoksyczności		

	metylową	
C-11	Zastąpienie grupy OH w pozycji C-11 grupą metoksylową lub atomem wodoru	Nie wpływa na aktywność
C-12	Zastąpienie atomu węgla pozycji C-12 atomem azotu, przy jed- noczesnym identycznym podstawieniu pozycji C-5	Udowodniona aktywność prze- ciwnowotworowa
C-13	Wprowadzenie w pozycję C-3' grupy 4-morfolinowej lub w położenie C-5 grupy iminowej w pochodnych 13-deoksyantracyklin	Bardzo duża aktywność prze- ciwnowotworowa <i>in vitro</i> przy jednoczesnym niedużym obni- żeniu aktywności <i>in vivo</i> i obni- żeniu kardiotoksyczności
	Wprowadzenie w pozycję C-13 daunorubicyny grupy hydrazy- dowej	Zwiększenie aktywności <i>in vivo</i> w stosunku do macierzystego antybiotyku
	Wprowadzenie grupy =N-NHCOC ₆ H ₅ w pozycję C-13	Duża aktywność w leczeniu białaczek
C-14	Wprowadzenie w pozycję C-14 daunorubicyny grupy hydroksy- lowej – otrzymany analog to doksorubicyna	Większa skuteczność, szcze- gólnie wobec trudnych w lecze- niu guzów litych, poszerzenie zakresu działania przeciwnowo- tworowego
	Podstawienie pozycji C-14 daunorubicyny atomem fluoru	Zachowanie aktywności prze- ciwnowotworowej
	Podstawienie pozycji C-14 daunorubicyny atomem bromu	Prawie całkowity zanik aktyw- ności
	Podstawienie w pozycji C-14 daunorubicyny lub doksorubicyny reszty kwasu masłowego lub retynowego	Nieznaczne obniżenie aktywno- ści i wystąpienie zdolności do przełamania bariery lekoopor- ności <i>in vitro</i>
	Podstawienie w pozycji C-14 i jednocześnie w pozycji C-3' dau- norubicyny lub doksorubicyny reszty kwasu masłowego lub retynowego	Zmniejszenie aktywności i zdolności do przełamania barie- ry lekooporności
	Podstawienie pozycji C-14 daunorubicyny lub doksorubicyny resztą kwasu acetylosalicylowego lub palmitynowego	Zmniejszenie aktywności i zdolności do przełamania barie- ry lekooporności
	Wprowadzenie grupy benzyloacetylowej lub grup O-CO-alkil, S-CO-alkil, O-CO-alkil-COOH	Znaczny wzrost aktywności in vitro i in vivo
	Podstawienie pozycji C-14 grupą azydową, tiocyjanową, acetylo- tiolową przy jednoczesnym podstawieniu położenia C-3' i C-4' grupą OAc	Znaczne obniżenie aktywności in vivo
	Zastąpienie w pozycji C-14 atomu wodoru grupami O-alkil, O-aryl, O-acyl z wytworzeniem eterów lub tioeterów	Obniżenie aktywności przeciw- nowotworowej
	Wprowadzenie w pozycję C-14 grup estrowych	Zachowanie lub zwiększenie aktywności przeciwnowotwo- rowej

	Wprowadzenie w pozycję C-14 grupy β -aminoetylowej przy jednoczesnej obecności w pozycjach C-9, C-2' i C-3' odpowiednio grup NH ₂ , OH oraz atomu fluoru	Duża aktywność przeciwnowo- tworowa
	Podstawienie pozycji C-14 grupą arylową przy jednoczesnym podstawieniu pozycji C-3' i C-4' grupą NH ₂	Bardzo dobrze rozpuszczalna w tłuszczach pochodna o zbliżo- nej do wyjściowych antybioty- ków aktywności
	Modyfikacja w pozycji C-14 grupami: alkilową, azydową, tiocy- janianową, nitrową, sulfurylową, acetylotiolową	Obniżenie aktywności przeciw- nowotworowej
MODYFIKA	ACJE W CZĄSTECZCE DAUNOZAMINY	O OH R1
Obecność u znaczenie d antybiotyków fragmentu c biologicznej	ngrupowania cukrowego ma niezwykle ważne la aktywności <i>in vitro</i> i <i>in vivo</i> . Modyfikacje w polegające na pozbawieniu antracyklin ukrowego doprowadzają do utracenia aktywności R_4	$\begin{array}{c c c c c c c c c c c c c c c c c c c $
C-2' i C-3'	Wprowadzenie atomu jodu w pozycję C-2' i grupy hydroksylo- wej w pozycję C-3' cząsteczki idarubicyny (annamycyna)	Zwiększenie aktywności <i>in vitro</i> 50 – 100 krotnie w stosunku do aktywności dokso- rubicyny, obniżenie kardiotok- syczności oraz brak oporności krzyżowej ale tylko dla po- chodnych 2'(R) (dla pochod- nych 2'(R) zawierających w tej pozycji atom chloru lub bromu sytuacja jest podobna, pochod- ne 2'(S) są nieaktywne).
	Wprowadzenie w dauno- lub doksorubicynie atomu fluoru w pozycję C-2', grupy hydroksylowej w pozycję C-3' i grupy OCH_3 w pozycji C-4'	Zwiększenie aktywności wobec opornych nowotworów
	Wprowadzenie atomu fluoru w pozycję C-2', grupy hydroksylo- wej w pozycję C-3' i grupy NH ₂ w pozycję C-4'cząsteczki dau- no- lub doksorubicyny	Zwiększenie aktywności w stosunku do związków macie- rzystych, zmniejszenie toksycz- ności oraz zwiększenie roz- puszczalności w wodzie. Do- datkowo zmiana położenia grupy NH ₂ w pozycji C-4' z aksjalnego na ekwatorialne spowodowała zwiększenie aktywności około 4 krotnie w stosunku do linii białaczki L1210
C-4'	Wprowadzenie atomu jodu w pozycję C-4' doksorubicyny	Brak znaczących zmian w ak- tywności przeciwnowotworo- wej w stosunku do doksorubi- cyny
	Wprowadzenie w pozycję C-4' daunorubicyny oraz doksorubi- cyny ekwatorialnej grupy CH ₃ oraz aksjalnej grupy OH lub	Zmniejszenie toksyczności i

	OCH ₃	zarazem aktywności
	Wprowadzenie w pozycję C-4' doksorubicyny atomu wodoru oraz grupy OCH_3	Zachowanie aktywności po- równywalnej do doksorubicyny
	Wprowadzenie w pozycję C-4' ugrupowania hydroksyalkilowego	Zmniejszenie aktywności w stosunku do daunorubicyny
	Wprowadzenie w pozycję C-4' ugrupowania hydroksyalkilowego przy jednoczesnej obecności grupy OH w pozycji C-4	Bardzo duża cytotoksyczność w stosunku do białaczki L1210
	Wprowadzenie w pozycję C-4' grupy aminowej albo podstawio- nej lub niepodstawionej grupy morfolinowej	Niewielka zmiana aktywności w stosunku do analogicznych pochodnych podstawionych w pozycji C-3'
	Wprowadzenie w pozycję C-4' ugrupowania 4'-tetrahydropiranylowego (pirarubicyna)	Antybiotyk stosowany w terapii o skuteczności zbliżonej do doksorubicyny ale o dużo mniejszej kardiotoksyczności
	Epimeryzacja pozycji C-4' doksorubicyny i utworzenie tym samym izomerycznego analogu (epirubicyna)	Szeroko stosowany w lecznic- twie lek o obniżonej kardioto- syczności
	Zastąpienie grupy OH w pozycji C-4' epirubicyny atomem wo- doru (esorubicyna)	Na modelach nowotworów jelita i piersi wykazywała ak- tywność zbliżoną do doksorubi- cyny przy obniżonej kardiotok- syczności
	Epimeryzacja węgla w pozycji C-4' podstawionego grupą OH w pochodnych 2'-fluorodaunorubicyny lub 2'-fluorodoksorubicyny	Nie wpływa na aktywność przeciwnowotworową
C-2'	Wprowadzenie w pozycję C-2' daunorubicyny i doksorubicyny grupy OCH ₃	Znaczne zwiększenie aktywno- ści wobec białaczki L1210 i zmniejszenie toksyczności
C-3'	Zamiana grupy NH_2 w położeniu C-3' doksorubicyny na grupę OH	Zwiększenie aktywności prze- ciwnowotworowej
	Wprowadzenie grupy OH w pozycję C-3' oraz grupy NH_2 w pozycję C-9	Znaczne zwiększenie aktywno- ści. Związek w fazie badań klinicznych (amrubicyna)
	Wprowadzenie w pozycję C-3' grupy <i>O</i> -benzylowej i jednocze- sne wprowadzenie w pozycję C-14 ugrupowania alkilokarbony- lowego	Zdolność do przełamania barie- ry lekooporności <i>in vitro</i>
	Wprowadzenie w pozycję C-3' grupy merkaptylowej lub tiome- tylowej	Zachowanie aktywności przeciwnowotworowej
	Wprowadzenie w pozycję C-3' grupy S-acetylowej	Zmniejszenie aktywności w stosunku do doksorubicyny
	Zamiana grupy NH ₂ w pozycji C-3' w daunorubicynie na grupę OH przy jednoczesnym wprowadzeniu atomu wodoru w pozycję C-5'	Nie wpływa na aktywność in vivo
	Podstawienie pozycji C-3' i C-4' w daunorubicynie grupami hydroksylowymi	Nie wpływa na aktywność in vivo

Zamiana grupy NH_2 w pozycji C-3' na grupę OH i jej epimery- zacja przy jednoczesnym wprowadzeniu atomu wodoru lub grupy OH w pozycję C-5'	Zanik aktywności przeciwno- wotworowej
Epimeryzacja atomu węgla C-3' daunorubicyny	Nie wpływa na aktywność
Wprowadzenie w pozycję C-3' podstawionej lub niepodstawio- nej grupy 4-morfolinowej lub piperydowej (otrzymane pochodne zawierają atom azotu w pozycji C-3' w pierścieniu)	Znaczne zwiększenie aktywno- ści, a w przypadku podstawnika morfolinowego jednoczesne obniżenie kardiotoksyczności oraz zdolność do przełamania bariery lekooporności
Podstawienie grupy NH ₂ w pozycji C-3' pierścieniem cyklohek- sylowym lub <i>4H</i> -piranowym	Wyraźne zmniejszenie aktyw- ności
Podstawienie grupy aminowej w pozycji C-3' <i>L</i> -leucyną	Wyraźne zwiększenie aktywno- ści, zmniejszenie toksyczności (w tym kardiotoksyczności) w stosunku do macierzystego antybiotyku, znaczna koncen- tracja leku w guzkach nowo- tworowych
Podstawienie grupy aminowej w pozycji C-3' grupą benzylook- sykarbonylową	Niewielkie zwiększenie aktyw- ności przeciwnowotworowej
Przyłączenie polimeru do grupy aminowej w pozycji C-3' za pomocą oligopeptydu w doksorubicynie	Duża aktywność wobec guzów litych oraz wobec wielu mysich nowotworów wrażliwych i opornych na doksorubicynę
Podstawienie grupy aminowej w pozycji C-3' oligopeptydem	Duża aktywność wobec nowo- tworów oraz znaczne zmniej- szenie toksyczności, w tym kardiotoksyczności
Podstawienie grupy aminowej w pozycji C-3' ugrupowaniem trifluorokarbonylowym oraz jednoczesne podstawienie atomu wodoru w pozycji C-14 doksorubicyny grupą n-butylową (walrubicyna)	Związek zarejestrowany w Kanadzie i USA do leczenia nowotworów głównie pęcherza moczowego
Podstawienie grupy aminowej w pozycji C-3' dwiema grupami chloroetylowymi i jednoczesne podstawienie pozycji C-4' grupą metylosulfonową	Zwiekszenie aktywności prze- ciwnowotworowej, zmniejsze- nie toksyczności, zdolność do przełamania bariery lekoopor- ności
Podstawienie grupy aminowej doksorubicyny i epirubicyny w pozycji C-3'ugrupowaniem 2-chloroetylonitrozoureidowym	Nie wpływa na aktywność
Podstawienie grupy aminowej dauno- i doksorubicyny w pozycji C-3' grupami metylowymi	Obniżenie o około połowę aktywności przeciwnowotwo- rowej
Podstawienie grupy aminowej dauno- i doksorubicyny w pozycji C-3' grupami takimi jak arylowa, trifluorokarbonylowa, benzy- lowa	Nie wpływa istotnie na zwięk- szenie aktywności

	Podstawienie grupy aminowej w pozycji C-3' grupą N,N-dimetylową	Zwiększenie kardiotoksyczno- ści w stosunku do analogów <i>N</i> -metylowych
	Podstawienie w daunorubicynie i doksorubicynie grupy amino- wej w pozycji C-3' ugrupowaniami benzylowymi	Zwiększenie aktywności prze- ciwnowotworowej (najwyższą aktywność uzyskano dla po- chodnych daunorubicyny z podstawnikiem dibenzylowym i dla doksorubicyny z odpowied- nim podstawnikiem monoben- zylowym)
	Podstawienie grupy aminowej daunorubicyny w pozycji C-3' grupą nitrobenzylową	Zwiększenie aktywności w stosunku do doksorubicyny, zdolność do przełamania leko- oporności
	Zastąpienie jednego z atomów wodoru w grupie NH ₂ w pozycji C-3' kwasem <i>cis</i> lub <i>trans</i> retynowym	Zwiększenie aktywności prze- ciwnowotworowej i synergizm działania z innymi cytostaty- kami
	Podstawienie grupy aminowej w pozycji C-3' grupami metylo- wymi, przy jednoczesnym wprowadzeniu w położenie C-4' gru- py OCOCH ₃ oraz w położenie C-9 grupy CH ₃ , zaś w pozycję C-1 i C-8 grup metoksylowych	Duża aktywność wobec bia- łaczki L1210
	Podstawienie grupy aminowej w pozycji C-3' grupą trifluoroace- tylową, przy jednoczesnym zastąpieniu grupy OH w położeniu C-4' atomem jodu lub tlenu	Wyraźne zwiększenie aktywno- ści
C-3' i C-4'	Jednoczesna epimeryzacja atomów węgla w pozycjach C-3' i C-4' daunorubicyny z utworzeniem 3',4'-diepirubicyny	Nie wpływa na aktywność przeciwnowotworową
Modyfika- cje układu daunoza- miny	Zmniejszenie liczby podstawników	Zmniejszenie aktywności i zdolności do tworzenia adduk- tów z DNA

2.2.1. Chlorowodorek *N*-[(morfolino)metyleno]daunorubicyny

Od ponad 30 lat trwają prace, których celem jest znalezienie pochodnych antracyklin charakteryzująch się lepszymi właściwościmi biologicznymi, wyższą skutecznością działania i obniżoną cytotoksycznością [64, 65]. Wśród nowo zsyntetyzowanych analogów, znajduje się pochodna z morfolinowym podstawnikiem przy grupie aminowej daunozaminy [66, 67].

Rycina 3. Chlorowodorek *N*-[(morfolino)metyleno]daunorubicyny.

Wykazano, że wprowadzenie reszty morfolinowej w pozycję 3' reszty cukrowej umożliwia całkowite pokonanie bariery oporności na leki. Do badań wykorzystano linie komórkowe nowotworów ludzkich LoVo, MES-SA i HL-60, jak również ich oporne odpowiedniki LoVo/Dx, MES-SA/Dx5 i HL-60/MX2 [68].

Stwierdzono również, że morfolinowa pochodna w porównaniu z daunorubicyną wykazuje mniejszą cytotoksyczność względem lini komórkowej L1210 (Tabela 2).

Tabela 2. Cytotoksyczność i wychwyt komórkowy daunorubicyny i jej morfolinowej pochodnej

Antracyklina	Aktywność cytotoksyczna ED ₅₀ (nmol/l)	Wychwyt komórkowy (pmol/10 ⁶ komórek)
Daunorubicyna	22 ± 3	277 ± 21
Morfolinowa pochodna	75 ± 14	383 ± 35

Wartość ED₅₀ wyraża stężenie leku potrzebne do zredukowania liczby żywych komórek do 50%. Nie jest ona w tym przypadku skorelowana ze zdolnością do penetracji błon komórkowych ani też z wewnątrzkomórkowym rozmieszczeniem leku. Zaobserwowano, że badane leki kumulowały się w jądrze komórkowym i nie występowały w cytoplazmie [69, 70].

W przypadku pochodnej morfolinowej obserwuje się dwa maksima, odpowiadające zakresom stężeń 1 – 2,5 μ mol/l oraz powyżej 5 μ mol/l, dla których obserwowane jest wywoływanie uszkodzeń łańcuchów DNA. Dla daunorubicyny obserwowany jest tylko jeden zakres i wynosi on 1 – 2,5 μ mol/l. W przypadku przekroczenia wartości 5 μ mol/l, zdolność do uszkodzeń łańcuchów znacząco spada. Różnica ta sugeruje występowanie dodatkowego mechanizmu w przypadku morfolinowej pochodnej, polegającego prawdopodobnie na formowaniu kowalencyjnych adduktów z DNA [69, 71].

W celu wyznaczenia poziomu dawki śmiertelnej, wyrażonej jako LD₅₀, przeprowadzono badania na myszach. W przypadku morfolinowej pochodnej, wartość LD₅₀ wyniosła 24,0 \pm 1,32 mg/kg w porównaniu do wartości 3,1 \pm 0,12 mg/kg otrzymanej dla daunorubicyny. Również badania kardiotoksyczności wykazały znaczące różnice w stosunku do związku macierzystego. Zwierzęta, które zostały poddane działaniu morfolinowej pochodnej wykazywały prawie niezmieniony mięsień sercowy, czasami z bardzo małymi lub prawie niezauważalnymi zmianami histopatologicznymi, podczas gdy u zwierząt, którym podano wyjściowy antybiotyk zmiany były znaczące [72]. Uzyskane wyniki wskazują, że nowa pochodna może okazać się bardziej użyteczna w terapii niż związek wyjściowy, w związku z jej zredukowanymi niekorzystnymi efektami i większą aktywnością antyproliferacyjną [73, 74].

2.3. Antybiotyki antracyklinowe stosowane w terapii

Terapia antybiotykami antracyklinowymi stanowi bardzo efektywną metodę leczenia wielu nowotworów. Ze względu na kardiotoksyczne działanie tej grupy leków, ważny jest odpowiedni sposób i schemat dawkowania.

Poniżej przedstawiono schematy dawkowania oraz właściwości farmakokinetyczne wybranych leków z grupy antracyklin [8, 75, 76]:

DAUNORUBICYNA [77, 78, 79]

- po podaniu dożylnym szybko przenika z krwi do tkanek
- czas półtrwania: od 30 50 h

- metabolizowana w wątrobie do daunorubicynolu, który wydalany jest z żółcią oraz moczem
- 29% leku wydalane jest z moczem w ciągu 7 dni w stanie niezmienionym
- dawkowanie: 40 mg/m² dziennie, dożylnie 3 5 dni z 3 4 tygodniowymi przerwami lub 30 60 mg/m² 2 razy w tygodniu

DOKSORUBICYNA [77, 80]

- czas półtrwania trójfazowy: 12 min, 3,3 h i 30 h
- metabolizowana w wątrobie do wielu metabolitów
- klirens wątrobowy leku stanowi 60% wątrobowego przepływu krwi
- wydalana głównie z żółcią
- 10% leku wydalane jest z moczem w stanie niezmienionym
- dawkowanie: $60 75 \text{ mg/m}^2$ dożylnie w jednorazowym wlewie, co 21 dni

AKLARUBICYNA [77, 81, 82]

- szybko przenika z krwi do tkanek
- czas półtrwania dwufazowy: 30 min i 2 h
- metabolizowana w wątrobie
- wydalana z moczem i kałem w postaci metabolitów i w stanie niezmienionym
- dawkowanie: $25 600 \text{ mg/m}^2$ dożylnie, we wlewie, 7 dni co 2 tygodnie

EPIRUBICYNA [77, 83, 84]

- w znacznym stopniu przenika do tkanek
- czas półtrwania dwufazowy: faza pierwsza bardzo szybko, faza druga 40 h
- wydalana z kałem w stanie niezmienionym, częściowo w postaci metabolitów
- dawkowanie: $60 90 \text{ mg/m}^2$ dożylnie, we wlewie, raz na 3 tygodnie

IDARUBICYNA [77, 85, 86]

- przenika do płynu mózgowo-rdzeniowego
- czas półtrwania: od 10 30 h
- metabolizowana do idarubicynolu
- dawkowanie: 10 12 mg/m² dożylnie, we wlewie 3 dni lub 8 mg/m² dożylnie, we wlewie 5 dni

PIRARUBICYNA [77, 87]

- czas półtrwania trójfazowy: 1 5 min, 20 30 min i 13 23 h
- metabolizowana do czynnych metabolitów (tetrahydropiranyloadriamycynol, adriamycynol, adriamycynon, doksorubicyna) i metabolitów nieczynnych biologicznie (złożone związki aglikonów)
- wydalana głównie z żółcią, słabo przez nerki
- dawkowanie: 50 mg/m^2 dożylnie, we wlewie raz na 3 4 tygodni

ZORUBICYNA [77, 88]

- prolek
- metabolizowana w watrobie do daunorubicyny
- wydalana głównie z żółcią, słabo przez nerki (około 25%)
- dawkowanie: 200 mg/ m^2 dożylnie, we wlewie 4 dni

W tabeli 3 przedstawiono nazwy preparatów zawierających podstawowe antybiotyki antracyklinowe oraz ich zastosowanie.

Tabela 3. Antybiotyki antracyklinowe stosowane w terapii nowotworowej

Nazwy preparatów jednoskładnikowych	Zastosowanie	
	Daunorubicyna	
CERUBIDINE DAUNOBLASTIN DAUNORUBICIN R.P. DAUNOXOME (liposomalna forma) RUBIDOMYCIN RUBIDOMYCIN C	 Ostra białaczka limfoblastyczna i szpikowa Zaostrzenie blastyczne ostrej białaczki szpikowej 	
Doksorubicyna		
ADRIAMYCIN ADRIBLASTIN [HL; RD] ADRIBLASTINA [PFS; RD] ADRIBLASTINE BIORUBINA DOXIL (liposomalna forma) DOXOLEM DOXORUBICIN DOXORUBICIN EBEWE DOXORUBICIN DAKOTA	 Ostra białaczka limfoblastyczna i szpikowa Chłoniaki Mięsaki Rak żołądka, wątroby, płuca, pęcherza moczowego, gruczołu tarczowego, sutka 	

CAELYX (liposomalna forma) MYOCET RASTOCIN RUBEX		
RUBIDOX		
Epirubicyna		
BIOEPICYNA ELLENCE EPIMEDAC FARMORUBICYNA PFS FARMORUBICIN RD	 Chłoniaki Mięsaki Rak żołądka, płuca, pęcherza moczowego, sutka, jajnika, okrężnicy, oskrzeli 	
Aklarubicyna		
ACLACIN	Ostra białaczka szpikowaNowotwory narządowe	
Idarubicyna		
ZAVEDOS	Ostra białaczka limfoblastyczna i szpikowa	
Pirarubicyna		
PINORUBIN THERARUBICIN THEPRUBICINE	Ostre białaczkiChłoniaki	
Zorubicyna		
RUBIDAZONE	Ostra białaczka limfoblastyczna i mieloblastyczna	

2.4. Badanie trwałości

Stabilność leku w określonej postaci farmaceutycznej jest czynnikiem, który warunkuje skuteczność działania oraz bezpieczeństwo substancji leczniczej podczas wytwarzania, transportu, dystrybucji oraz przechowywania. Celem badań trwałości jest określenie, do jakich przemian chemicznych i fizycznych dochodzi wraz z upływem czasu i pod wpływem różnych czynników otoczenia, takich jak temperatura, wilgotność, obecność tlenu i światła.

Stabilność leku w różnych warunkach jest gwarancją jego dostępności *in vivo*, niezmiennej skuteczności oraz bezpiecznego poziomu produktów rozkładu. Rozkład leku może spowodować wystąpienie interakcji pomiędzy aktywnymi substancjami czynnymi i składnikami pomocniczymi zawartymi w danej postaci leku, zmniejszenie zawartości substancji czynnej, a tym samym wzrost poziomu produktów rozkładu, czy też niekorzystną modyfikację szybkości uwalniania i rozpuszczalności. Niezwykle istotnym czynnikiem dla stabilności jest również dobór odpowiedniego opakowania. Testy przyspieszonego starzenia leków powinny być przeprowadzone w docelowym opakowaniu. Niewłaściwe tworzywo, z którego wykonano opakowanie leku może wpłynąć na dyskwalifikację nawet najtrwalszej postaci leku [89, 90, 91]. Wśród zjawisk powodujących rozkład leków na największą uwagę zasługują reakcje:

- hydrolizy
- utleniania i redukcji
- fotolizy
- izomeryzacji

Troska o dobro pacjenta spowodowała, że organa nadzoru nad lekami i przemysłem farmaceutycznym, takie jak:

- Europejska Agencja do Spraw Oceny Środków Leczniczych EMEA
- Federalny Urząd do Spraw Żywności i Leków FDA
- Światowa Organizacja Zdrowia WHO

powołały wspólne przedsięwzięcie jakim jest Międzynarodowa Konferencja Harmonizacji Wymagań dla Leków (ICH). Zadaniem ICH jest ujednolicanie wymagań dotyczących jakości, bezpieczeństwa i skuteczności substancji leczniczych oraz opracowanie wytycznych dotyczących informacji zawartych we wnioskach rejestracyjnych składanych w większości państw świata.

Ogólnie produkt (odpowiednia forma leku w opakowaniu ostatecznym) musi być oceniony w określonych warunkach przechowywania, w których można sprawdzić jego stabilność przy danej temperaturze i wilgotności. Warunki te oraz czas trwania wybranych badań muszą być wystarczające, aby odpowiadały magazynowaniu, transportowi oraz ich używaniu. Generalnie, badania te dzielimy na [92]:

- długookresowe (prowadzone przez okres co najmniej 12 miesięcy w warunkach 25 ± 2°C i wilgotności względnej 60 ± 5% lub 30 ± 2°C i wilgotności względnej 65 ± 5%)
- pośrednie (prowadzone przez okres co najmniej 6 miesięcy w warunkach 30 ± 2°C i wilgotności względnej 65 ± 5%, jeżeli badania długoterminowe prowadzone są w warunkach 25 ± 2°C/ 60 ± 5% RH)
- przyspieszone (prowadzone przez okres co najmniej 6 miesięcy w warunkach $40 \pm 2^{\circ}$ C i wilgotności względnej $75 \pm 5\%$)
- stresowe (np. fotostabilność, $50 \pm 2^{\circ}$ C, w wilgotności otoczenia)

Lek uznaje się za stabilny, jeżeli w czasie długookresowych badań stabilności odpowiada specyfikacji i w czasie przyspieszonych badań stabilności nie dochodzi w nim do istotnej zmiany, za którą przyjmuje się:

- 5% zmianę w zawartości substancji czynnej w stosunku do wartości początkowej
- jakikolwiek produkt rozkładu przekraczający kryterium akceptacji

- niespełnienie kryteriów akceptacji dla parametru wygląd, właściwości fizyczne (np. zabarwienie, twardość, rozdział faz), z tym, że niektóre zmiany w fizycznych właści-wościach mogą być spodziewane w badaniach przyspieszonych np. mięknięcie czop-ków
- niespełnienie kryteriów akceptacji dla wartości pH (jeżeli jest to parametr wymagany dla danej formy leku)
- niespełnienie kryteriów akceptacji dla parametru uwalnianie dla 12 jednostkowych dawek

Nieodłączną częścią testów stresowych jest badanie fotostabilności nowych substancji aktywnych oraz nowych leków. Celem takiego badania jest wykazanie, że ekspozycja na światło nie powoduje zmian jakościowych i ilościowych [93]. Jednak termin fotostabilność odnosi się nie tylko do rozkładu spowodowanego ekspozycją na światło ale także do procesów związanych z formowaniem rodników, transferem energii i luminescencją. Zmiany aktywności leków, jak również ich właściwości fizykochemicznych pod wpływem promieniowania wywołane są złożonymi procesami, z których pierwszy polega na wzbudzeniu cząsteczki poprzez absorpcję fotonu, a drugi na powstaniu związków pośrednich, którymi są rodniki [93, 94, 95].

Badania fotostabilności powinny być przeprowadzane dla:

- substancji używanych do wytwarzania nowych produktów leczniczych. Badania te powinny obejmować badania wymuszonej degradacji, których celem jest oszacowanie całkowitej fotoczułości materiału, wyznaczenie mechanizmów rozkładu substancji oraz badań standardowych potwierdzających
- produktów leczniczych bez opakowania, bezpośrednio wyeksponowanych na działanie światła
- produktów leczniczych w opakowaniu bezpośrednim
- jeśli jest wymagane, produktów w opakowaniu handlowym (opakowanie bezpośrednie, etykieta, ulotka, opakowanie zewnętrzne)

Do badań fotostabilności można zastosować następujące źródła światła [96]:

 opcja 1 – każde źródło światła podobne do wzorca emisji D65 (międzynarodowy wzorzec światła dziennego zewnętrznego)/ID65 (międzynarodowy wzorzec światła dziennego wewnętrznego) takie jak: lampa fluorescencyjna sztucznego światła dziennego będąca kombinacją lampy światła widzialnego i ultrafioletowego, lampa ksenonowa lub metalohalogenowa opcja 2 – próbki powinny być poddane działaniu dwóch lamp: lampie emitującej chłodne, białe światło fluoroscencyjne oraz lampie emitującej bliski ultrafiolet posiadającej zakres spektralny od 320 nm do 400 nm, z maksimum energii przy 350 i 370 nm

W przypadku badań potwierdzających, próbki powinny być poddane działaniu światła o energii nie mniejszej niż 200 watogodzin/m², co najmniej 1,2 miliona luksogodzin.

Podczas przeprowadzania badań należy minimalizować efekt temperaturowy (utrzymywać stała temperaturę, nie wyższą niż 30°C i umieszczać równolegle z próbami badanymi próby odniesienia, owinięte w folię aluminiową), zapewnić odpowiednie rozmieszczenie prób (umożliwiające dotarcie światła do próbek we wszystkich miejscach) oraz kontrolować natężenie promieniowania (używać walidowanego systemu aktynometrów i radiometrów).

Poziom dopuszczalnych zmian dla produktów leczniczych szacowany jest na podstawie schematu decyzyjnego przedstawionego na rycinie 4.

Rycina 4. Schemat decyzyjny dla badań stabilności produktów leczniczych [93].

2.5. Metodologia analityczna

W lecznictwie stosowane są chlorowodorki antybiotykyków antracyklinowych. Związki te są dobrze rozpuszczalne w wodzie oraz w polarnych rozpuszczalnikach organicznych (metanol, acetonitryl). Antybiotyki antracyklinowe występują w postaci proszków o intensywnym poma-rańczowoczerwonym zabarwieniu. Absorbują one światło w zakresie UV przy $\lambda_{maks} = 254$ nm oraz w zakresie światła widzialnego przy $\lambda_{maks} = 480$ nm. Są związkami silnie wrażliwymi na działanie światła. pK_a grupy aminowej dla poszczególnych antybiotyków antracyklinowych wynosi: około 8,2 dla antybiotyków z niepodstawioną daunozaminą (daunorubicyny, doksorubicyny i idarubicyny). Dla antybiotyków posiadających podstawnik w pozycji 4' pK_a jest niższe i wynosi odpowiednio 7,7 dla epirubicyny oraz 6,5 dla jododoksorubicyny [97, 98].

Lipofilność antybiotyków antracyklinowych wzrasta w następującym porządku:

doksorubicyna < epirubicyna < daunorubicyna < idarubicyna < pirarubicyna

Antracykliny w roztworach wykazują tendencję do łączenia się w dimery, co może prowadzić do błędów podczas oznaczeń spektrofotometrycznych w roztworach stężonych [97].

Do identyfikacji budowy chemicznej antybiotyków antracyklinowych wykorzystywane mogą być metody spektralne – widma absorpcyjne w nadfiolecie i podczerwieni.

Przykładowe widma absorpcyjne antybiotyków antracyklinowych przedstawione są na rycinach 5 – 10.

	Metanol	0,1 mol/l HCl
Maksimum absorpcji	494 nm	478 nm
	290 nm	290 nm
	233 nm	232 nm
$A_{_{1cm}}^{1\%}$	219	208
	149	154
	675	640
З	12340	11700
	8380	8680
	38100	36080

długość fali [nm]

liczba falowa [cm⁻¹]

Rycina 6. Widmo absorpcyjne w podczerwieni chlorowodorku daunorubicyny [99].

	Metanol	0,1 mol/l HCl
Mala	476 nm	478 nm
absorpcii	251 nm	253 nm
absorpeji	233 nm	232 nm
	215	205
$A_{1cm}^{1\%}$	441	429
1cm	668	634
	12500	11900
З	15600	24900
	38800	36800

Rycina 7. Widmo UV chlorowodorku doksorubicyny w metanolu i 0,1 mol/l kwasie solnym [99].

Rycina 8. Widmo absorpcyjne w podczerwieni chlorowodorku doksorubicyny [99].

	Metanol	0,1 mol/l HCl
Maksimum absorpcji	476 nm 233 nm	484 nm 232 nm
$A_{1cm}^{1\%}$	206 659	194 614
3	12000 38200	11200 35600

długość fali [nm]

Rycina 9. Widmo UV chlorowodorku epirubicyny w metanolu i 0,1 mol/l kwasie solnym [99].

Rycina 10. Widmo absorpcyjne w podczerwieni chlorowodorku epirubicyny [99].

2.5.1. Metody oceny jakości daunorubicyny według Farmakopei Polskiej VIII = Farmakopei Europejskiej 7.0 i USP 31

W tabeli 4 przedstawiono porównanie wymagań jakości dla chlorowodorku daunorubicyny wg FP VIII = Farmakopei Europejskiej (EP) 7.0 i Farmakopei Amerykańskiej (USP) 31.

Tabela 4. Wymagania	jakości dla chlor	rowodorku daur	norubicyny wg.	FP VIII =	EP 7.0 [10	0] i USP 31
[101]						

PARAMETR	FARMAKOPEA POLSKA VIII =	USP 31	
	CHLOROWODOREK DAUNORUBICYNY	CHLOROWODOREK DAUNORUBICYNY	CHLOROWODOREK DAUNORUBICYNY DO INIEKCJI
Zawartość	95,0 % – 102,0 % w przeliczeniu na bezwodną substancję	842 μg/mg – 1030 μg/mg	90,0% - 115,0%
Właściwości	Wygląd: krystaliczny, pomarańczowo- czerwony proszek, higroskopijny <i>Rozpuszczalność</i> : łatwo rozpuszczalny w wodzie i w metanolu, dość trudno w etanolu (96%), praktycznie nieroz- puszczalny w acetonie	<i>Krystaliczność:</i> spełnia wymagania	Zgodny z wymaga- niami USP dla iniekcji
Tożsamość	 A. Widmo IR substancji badanej po- równuje się z widmem IR chlorowo- dorku daunorubicyny CSP B. Reakcja jonów chlorkowych z azotanem srebra w środowisku kwasu azotowego, powstaje biały osad 	 A. Widmo IR substancji badanej porównuje się z widmem IR chlorowodorku daunorubicyny RS USP B. Wysokosprawna chroma- tografia cieczowa: czas retencji głównego piku substancji badanej jest zgodny z czasem reten- cji substancji wzorcowej w oznaczaniu zawartości 	Wysokosprawna chromatografia cie- czowa: czas retencji głównego piku sub- stancji badanej jest zgodny z czasem retencji substancji wzorcowej w ozna- czaniu zawartości
рН	W roztworze wodnym pozbawionym CO ₂ , o stężeniu 5 mg/ml: 4,5 – 6,5	Od 4,5 do 6,5 w roztworze o stężeniu 5 mg/ml	Od 4,5 do 6,5 w roz- tworze przygotowa- nym zgodnie z etykie- tą
Substancje pokrewne	<i>Chromatografia cieczowa:</i> <i>kolumna</i> : długość: 0,25 m, średnica wewnętrzna: 4,0 mm <i>faza nieruchoma</i> : żel krzemionkowy z grupami oktadecylosililowymi zwią- zanymi na końcu (5 μm) <i>faza ruchoma</i> : mieszanina równych objętości acetonitrylu i roztworu zawie- rającego 2,88 g/l laurylosiarczanu sodu i 2,25 g/l kwasu fosforowego <i>szybkość przepływu</i> : 1 ml/min <i>detekcja</i> : UV, 254 nm <i>wprowadzenie</i> : 5 μl <i>czas analizy</i> : dwukrotność czasu reten- cji daunorubicyny		

	retencia wzgledna w porównaniu z		
	daunorubicyną (czas retencji około 15 minut):		
	 aglikon daunorubicyny około 0.4 		
	 doksorubicyna około 0.5 		
	 epirubicyna około 0 6 		
	- daunorubicynol około 0.7		
	<i>rozdzielczość</i> : nie mniej niż 2.0 pomie-		
	dzy pikami doksorubicyny i epirubicy- ny		
	wartości graniczne:		
	 aglikon daunorubicyny: nie więcej niż 0,5% 		
	 daunorubicynol: nie więcej niż 1,5% 		
	 doksorubicyna: nie więcej niż 0,5% 		
	 każde inne zanieczyszczenie: nie więcej niż 0,5% 		
	 suma wszystkich zanieczyszczeń: nie więcej niż 2,5% 		
Butanol	nie więcej niż 1,0%		
Woda	nie więcej niż 3,0%	nie więcej niż 3,0%	nie więcej niż 3,0%
Endotoksyny bakteryjne	mniej niż 4,3 IU/mg, jeżeli substancja jest przeznaczona do wytwarzania po- zajelitowych postaci leku bez zachowa- nia odpowiedniej procedury pozwalają-		nie więcej 4,3 jed- nostki endotoksyn/mg daunorubicyny
	cej na usunięcie endotoksyn bakteryj- nych		
Zawartość	Metoda HPLC jak podano w badaniu	Metoda HPLC	
	substancji pokrewnych	kolumna: długość: 30 cm,	
		średnica wewnętrzna	a: 4,6 mm
		<i>faza nieruchoma</i> : wypełnienie krzemionkowy z grupami okta ceramiczne mikrocząstki) (5–	typu L1 wg USP (żel adecylosililowymi lub 10 μm)
		<i>faza ruchoma</i> : mieszanina wo (62:38) doprowadzona do pH	dy i acetonitrylu $2,2 \pm 0,2$ kwasem fos-
		szyhkość przephywy: 1 5 ml/m	in
		detekcia: UV, 254 nm	
		<i>wprowadzenie</i> : 5 µl	
		względne czasy retencji:	
		 doksorubicyna około 	0,7
		 daunorubicyna 1,0 	
		rozdzielczość: nie mniej niż 3,	0 pomiędzy pikami
		daunorubicyny i doksorubicyn	y (z roztworu roz-
		dzielczego) PSD dla badarwak prób: pie y	viacaj niż 2 0%
Przechowywanie	W hormetycznym pojemniku, chronice	W hormotycznym pojomni	W poiomniky shro
1 12centowywanie	od światła.	ku, chroniac od światła i	niacym od światła. dla
	Jeżeli substancja jest sterylna przecho-	nadmiernego ciepła.	jałowych form.
	wywać w jałowym, hermetycznym		
	pojemniku z zabezpieczeniem gwaran-		
1	cyjnym.		

Zanieczyszczenia daunorubicyny:

Rycina 11. Zanieczyszczenia daunorubicyny.

2.5.2. Inne chromatograficzne metody oznaczania daunorubicyny

W tabeli 5 przedstawiono wybrane przykłady metod stosowanych w analizie daunorubicyny

Tabela 5. W	vbrane metody	v stosowane w	analizie	daunorubicvnv
1 40014 5. 11	yorane metody	blobb mulie m	unundic	additionable ging

L.p.	Parametry metody	Zastosowanie metody
1	Metoda HPLC	Badanie kinetyki reakcji fotode-
	<i>kolumna</i> : $100 \times 4,6 \text{ mm}$	gradacji daunorubicyny [102]
	faza nieruchoma: ODS Hypersil, 5 μm	
	<i>faza ruchoma</i> : acetonitryl, woda (55:45), do każdego litra tak przy- gotowanego roztworu dodano 10 kropli dietyloaminy, a następnie doprowadzono do pH 2,5 10% kwasem fosforowym	Badanie stabilności daunorubicyny w polipropylenowych strzykaw- kach i woreczkach PCV [103]
	szybkość przepływu: 1,5 ml/min	
	wprowadzenie: 10 µl	Badanie stabilności roztworów
	<i>detekcja</i> : UV, 290 nm	wodnych do iniekcji, roztworów do iniekcji z 5% dekstrozą i roztwo- rów do iniekcji z 0,9% chlorkiem sodu [104]
2	Metoda HPLC	Badanie stabilności daunorubicyny
	<i>kolumna</i> : $300 \times 4,0 \text{ mm}$	[105]
	<i>faza nieruchoma</i> : ODS Hypersil Si-10, 10 μm	
	<i>faza ruchoma</i> : metanol z 1% NH ₄ OH, chlorek metylenu (10:90)	
	szybkość przepływu: 2,0 ml/min	
	<i>detekcja</i> : UV, 254 nm	
3	Metoda HPLC	Kinetyka reakcji rozkładu dauno-
	<i>kolumna</i> : $300 \times 3.9 \text{ mm}$	rubicyny [106]
	<i>faza nieruchoma</i> : Lichrosorb RP8, 10 μm	
	<i>faza ruchoma</i> : chlorek sodu 0,02 mol/l o pH 2,0, acetonitryl (40:60). Roztwór 0,02 mol/l chlorku sodu doprowadzono do odpowiedniego pH kwasem nadchlorowym (70% m/V)	
	szybkość przepływu: 1,5 ml/min	
	wprowadzenie: 40 µl	
	<i>detekcja</i> : detektor fluoroscencyjny z $\lambda_{wzbudzenia}$ = 465 nm i λ_{emisji} = 550 nm	
4	Metoda TLC	Identyfikacja produktów degradacji
	<i>faza nieruchoma</i> : płytki pokryte żelem krzemionkowym, $60F_{254}$, 0,25 mm	[107]
	<i>faza ruchoma</i> : chloroform, metanol, 6 mol/l wodorotlenek amono- wy (90:10:1)	
	<i>detekcja</i> : 365 nm	

5	Metoda spektrofotometryczna detekcja: UV vis, 480 nm przygotowanie roztworu: mieszaninę leków przygotowano w 5% roztworze glukozy, w 500 ml plastikowych butelkach infuzyjnych stężenie roztworu daunorubicyny: 15,7 µg/ml Metoda HPLC kolumna: $300 \times 3,9$ mm faza nieruchoma: Lichrosorb RP8, 10 µm faza ruchoma: acetonitryl, woda doprowadzona kwasem nadchlo- rowym do pH 2,0 (1:1) szybkość przepływu: 1,5 ml/min wprowadzenie: 15 – 20 µl detekcja: λ = 254 nm i λ = 436 nm	Badanie trwałości roztworu iniek- cyjnego trzech substancji leczni- czych stosowanych w leczeniu leukemii [108] Badanie stabilności antracyklin w płynach infuzyjnych [109]
7	Metoda HPLC <i>kolumna</i> : 125 × 4,0 mm <i>faza nieruchoma</i> : Lichrosorb RP8, 5 µm <i>faza ruchoma</i> : chlorek sodu 0,01 mol/l o pH 2,25, acetonitryl (60:40) <i>szybkość przepływu</i> : 1,0 ml/min <i>wprowadzenie</i> : 20 µl <i>detekcja</i> : detektor fluoroscencyjny z $\lambda_{wzbudzenia}$ = 465 nm i λ_{emisji} = 550 nm	Stabilność kompleksów cyklodek- stryny z daunorubicyną w roztwo- rach wodnych [110]
8	Metoda HPLC kolumna: 300 × 4,0 mm faza nieruchoma: MCH-10 Micropak C18, 5 μm faza ruchoma A: 10 mmol/l fosforan sodu, 3% acetronitryl (V/V) faza ruchoma B: acetonitryl gradient: A:100% – 45% B: 0% – 55% wprowadzenie: 50 μl detekcja: UV, 235 nm	Badanie stabilności i zgodności <i>in vitro</i> daunorubicyny, cytarabiny i etopozydu [111]
9	Metoda HPLC przedkolumna: Hypersil ODS C18, 5 µm, 20 × 4,6 mm kolumna: 100 × 4,6 mm faza nieruchoma: Hypersil ODS C18, 5 µm faza ruchoma: acetonitryl, bufor mrówkowy o pH 4 (45:55) szybkość przepływu: 2,0 ml/min wprowadzenie: 10 µl detekcja: detektor fluoroscencyjny z $\lambda_{wzbudzenia}$ = 254 nm i λ_{emisji} = 565 nm	Badanie stabilności i zgodności 4 antracyklin z workami infuzyjnymi z PCV [112]

10	Metoda HPLC kolumna: 300 × 4,6 mm faza nieruchoma: μBondapak C18, 10 μm faza ruchoma: acetonitryl, 0,015 mol/l bufor fosforanowy o pH 4,6 (1:1) szybkość przepływu: 1,4 ml/min wprowadzenie: 10 μl detekcja: UV, 254 nm	Stabilność daunorubicyny w czte- rech płynach infuzyjnych [113]
11	Metoda HPLC <i>kolumna</i> : 300 × 3,9 mm <i>faza nieruchoma</i> : µBondapak–phenyl, 10 µm <i>faza ruchoma</i> : acetonitryl, bufor mrówkowy o pH 4 (23:77 lub 27:73) <i>szybkość przepływu</i> : 2,0 ml/min <i>wprowadzenie</i> : 50 – 150 µl <i>detekcja</i> : detektor fluoroscencyjny z $\lambda_{wzbudzenia}$ = 470 nm i λ_{emisji} = 585 nm	Badanie poziomu daunorubicyny i jej metabolitów w materiale biolo- gicznym [114]
12	Metoda HPLC przedkolumna: LiChroCART 4,0 mm × 4,0 mm, LiChrospher 100, RP-8 (5 µm) kolumna: 125 × 4,0 mm faza nieruchoma: Lichrosorb RP 8, 5 µm faza ruchoma: bufor fosforowy o pH 2,2, acetonitryl, THF (800:200:5) szybkość przepływu: 1,5 ml/min wprowadzenie: 40 µl detekcja: detektor fluoroscencyjny z $\lambda_{wzbudzenia}$ = 460 nm i λ_{emisji} = 550 nm	Daunorubicyna – wzorzec we- wnętrzny w oznaczaniu doksorubi- cyny i metabolitów w osoczu pa- cjentów chorych na AIDS [115] Oznaczenie poziomu daunorubicy- ny podawanej w liposomach w materiale biologicznym [116]
13	Metoda HPLC kolumna: 250 × 2,1 mm faza nieruchoma: Zorbax SIL, 5 μm faza ruchoma: chlorek metylenu, metanol, 25% roztwór wodoro- tlenku amonowego, woda (90:9:0,1:0,8) szybkość przepływu: 0,9 ml/min wprowadzenie: 200 μl detekcja: UV, 490 nm	Oznaczanie zawartości daunomy- cyny i daunomycynolu w osoczu [117] Oznaczanie zawartości daunomy- cyny i daunomycynolu w ludzkim osoczu [118]

3. Cel pracy

Celem mojej pracy jest ocena trwałości jednej z czterech nowych amidynowych pochodnych daunorubicyny – chlorowodorku *N*-[(morfolino)metyleno]daunorubicyny (MMD). Daunorubicyna jest antybiotykiem antracyklinowym, z grupy leków interkalujących DNA, stosowanym w chemioterapii licznych nowotworów.

Nowa pochodna zsyntetyzowana została w Instytucie Biotechnologii i Antybiotyków w Warszawie i jest przedmiotem zgłoszenia patentowego [119]. Związek ten charakteryzuje się dużą skutecznością *in vitro* i *in vivo*, zmniejszoną kardiotoksycznością oraz zdolnością pokonywania bariery oporności na leki [72].

Zaplanowane badania mają dostarczyć informacji odnośnie:

- wpływu budowy chemicznej i czynników fizykochemicznych na kinetyczny mechanizmu rozkładu MMD oraz szybkość rozkładu w roztworach wodnych, w warunkach ogólnej i właściwej katalizy kwasowo-zasadowej (wpływ stężenia jonów wodorowych, rodzaju i stężenia składników buforów oraz siły jonowej)
- trwałości MMD w powszechnie stosowanych rozpuszczalnikach iniekcyjnych, uwzględniając wpływ warunków przechowywania, rodzaju rozpuszczalnika, rodzaju opakowania i stężenia substratu
- podatności MMD na rozkład pod wpływem światła

• kinetycznego mechanizmu rozkładu w fazie stałej, w zależności od warunków przechowywania oraz wpływu temperatury i wilgotności względnej powietrza na trwałość.

W Katedrze i Zakładzie Chemii Farmaceutycznej badane są również następujące pochodne daunorubicyny:

- chlorowodorek *N*-[(pirolidyno)metyleno]daunorubicyny (PMD)
- chlorowodorek *N*-[(piperydyno)metyleno]daunorubicyny (PPD)
- chlorowodorek *N*-[(heksahydrazepin-1-ylo)metyleno]daunorubicyny (HMD)

Uzyskane wyniki badań pozwolą na określenie zależności pomiędzy budową a trwałością badanych pochodnych oraz aktywnością biologiczną.

4. CZĘŚĆ DOŚWIADCZALNA

4.1. Substancja do badań

Chlorowodorek N-[(morfolino)metyleno]daunorubicyny (MMD)

Pochodzenie substancji: substancja zsyntetyzowana w Instytucie Biotechnologii i Antybiotyków w Warszawie

Postać: sypki, krystaliczny, czerwony proszek.

Rozpuszczalność: substancja łatwo rozpuszczalna w wodzie oraz polarnych rozpuszczalnikach organicznych.

4.2. Odczynniki

- Acetonitryl, Merck Darmstadt, Niemcy, cz.d.a.
- Disodu wodorofosforan, POCh Gliwice, cz.d.a.
- Kwas borowy, POCh Gliwice, cz.d.a.
- Kwas octowy, odważka analityczna, POCh Gliwice
- Kwas ortofosforowy(V) 85%, POCh Gliwice, cz.d.a.
- Kwas solny, odważka analityczna, POCh Gliwice
- Metanol, POCh Gliwice, cz.d.a.
- Potasu diwodorofosforan, bezwodny, POCh Gliwice, cz.d.a.
- Sodu chlorek, POCh Gliwice

- Sodu edetynian; POCh Gliwice
- Sodu laurylosiarczan, Sigma Aldrich, Niemcy
- Sodu octan, POCh Gliwice, cz.d.a.
- Sodu wodorotlenek, POCh Gliwice
- Woda demineralizowana

4.3. Wzorzec wewnętrzny

• Chininy chlorowodorek, Sigma Aldrich, Niemcy, cz.d.a.

4.4. Roztwory do podania parenteralnego

- Aqua pro injectione, Polfarma, 5 ml Skład: woda do iniekcji
- 0,9% Roztwór chlorku sodu, Polfarma, 5 ml
 Skład: sodu chlorek 0,9 g, do 100 ml woda do iniekcji
- 5% Glucosum, Fresenius Kabi, 100 ml
 Skład: glukoza 50 g, do 1000 ml woda do iniekcji
- Injectio Glucosi 10%, Baxter Terpol, 250 ml
 Skład: glukoza 100 g, do 1000 ml woda do iniekcji
- Injectio Glucosi 20%, Baxter Terpol, 250 ml
 Skład: glukoza 200 g, do 1000 ml woda do iniekcji
- Injectio Solutionis Ringeri, Baxter Terpol, 250 ml
 Skład: sodu chlorek 8,60 g, potasu chlorek 0,30 g, wapnia chlorek 0,48 g, do 1000 ml
 woda do iniekcji
- Solutio Ringeri Lactate, Fresenius Kabi, 500 ml
 Skład: sodu chlorek 6,01 g, potasu chlorek 0,30 g, wapnia chlorek 0,151 g, sodu mleczan 3,10 g, do 1000 ml woda do iniekcji
- Glucosum 5% et natrium chloratum 0,9% (1:1), Fresenius Kabi, 250 ml Skład: glukoza 25,0 g, sodu chlorek 4,50 g, do 1000 ml woda do iniekcji
- Glucosum 5% et natrium chloratum 0,9% (2:1), Fresenius Kabi, 250 ml Skład: glukoza 33,3 g, sodu chlorek 3,0 g, do 1000 ml woda do iniekcji
- Płyn pediatryczny wyrównawczy, Baxter Terpol, 250 ml

Skład: sodu chlorek 6,02 g, potasu chlorek 0,30 g, wapnia chlorek 0,30 g, sodu octan 3,67 g, do 1000 ml woda do iniekcji

- Płyn fizjologiczny wieloelektrolitowy izotoniczny, Fresenius Kabi, 250 ml
 Skład: sodu chlorek 5,75 g, potasu chlorek 0,38 g , wapnia chlorek 0,394 g, magnezu chlorek 0,20 g, sodu octan 4,62 g, sodu cytrynian 0,90 g, do 1000 ml woda do iniekcji
- Jonosteril® Basic z glukozą, Fresenius Kabi, 500 ml Skład: sodu chlorek 1,70 g, sodu mleczan (50%) 2,24 g (4,48 g), potasu wodorofosforan 1,35 g, potasu chlorek 1,12 g, magnezu chlorek sześciowodny 0,51 g, glukoza 50,0 g (w postaci glukozy jednowodnej 55,0 g), do 1000 ml woda do iniekcji
- Mannitol 20%, Fresenius Kabi, 100 ml
 Skład: mannitol 200,0 g, do 1000 ml woda do iniekcji

4.5. Aparatura i sprzęt pomiarowy

- Wysokosprawny chromatograf cieczowy HPLC
 - pompa Shimadzu LC–6A
 - detektor Shimadzu UV/VIS SPD-6AV
 - rejestrator Shimadzu C–R6A
 - dozownik z pętlą dozującą 50 μl
 - strzykawka 50 µl Microliter Hamilton Co.; Reno Nevada, USA
- Spektrofotometr UV-160A Shimadzu, z oprogramowaniem PC 160 Plus
- Kuwety okrągłe kwarcowe do naświetlań o poj. 2,5 ml i grubości warstwy 1 = 1 cm, Hellma
- Radiometr typ VLX-3W z sensorem CX-365, Vilber Lourmat
- Wysokociśnieniowa lampa UV-VIS z palnikiem rtęciowym, HBO-50, Narva
- pH–Metr, Elmetron CP–401
- Waga analityczna Sartorius CP224S–OCE
- Aparat do demineralizacji wody USF T-801 965/8903, kolumna jonowymienna Seradest USF 800 z wężem połączeniowym, komorą pomiarową, konduktorem diodowym LFM, dystrybutorem
- Ultratermostat Fischerbrand FBH–612
- Mieszadło REAX-top 541

- Lodówka z zamrażalnikiem Polar typ TS136U wersja 638
- Igły Micropoint 1,6 × 40 mm MIFAM S.A. Milanówek
- strzykawki 10 ml Romed Holland
- ampułki polietylenowe, Polpharma
- Pakiet programów MsOffice
- Program Chem–Draw

4.6. Metody analityczne stosowane w badaniach trwałości MMD

Do badania trwałości MMD w roztworach wodnych, w warunkach ogólnej i właściwej katalizy kwasowo-zasadowej, w płynach do podania parenteralnego oraz w fazie stałej, zastosowano metodę HPLC o następujących parametrach rozdzielenia chromatograficznego [120]:

- kolumna Chromolith RP–18e, (5 μm) 100 × 4,6 mm, Merck Darmstadt, Niemcy lub LiChrospher 100 RP-18 (5 μm) 125 × 4 mm, Merck Darmstadt, Niemcy
- faza ruchoma: acetonitryl, metanol, roztwór zawierający 2,18 g/l laurylosiarczanu sodu i 2,25 g/l kwasu fosforowego(V) (9:1:10 V/V/V)
- szybkość przepływu fazy ruchomej: 1,0 ml/min
- długość fali detektora UV: 254 nm

Do badania podatności MMD na rozkład pod wpływem światła, zastosowano metodę UV-VIS. Celem potwierdzenia przydatności metod w badaniach trwałości MMD w roztwo-rach wodnych oraz w fazie stałej, walidacji poddano następujące parametry metody:

- selektywność (metoda HPLC)
- powtarzalność
- precyzję
- liniowość
- granicę detekcji i oznaczalności

Do walidacji metod użyto próbek substancji badanej, a w przypadku metody HPLC, także wzorca wewnętrznego – chlorowodorku chininy.

4.6.1. Metoda HPLC

Selektywność metody

Na chromatogramach rejestrowano dobrze rozdzielone piki substancji badanej, produktów jej rozkładu i wzorca wewnętrznego (Rycina 12).

Rycina 12. Chromatogramy HPLC MMD: $A - w 0.3 \text{ mol/l HCl} (\mu = 0.5 \text{ mol/l}) \text{ w czasie } t = 0,$ $B - w 0.3 \text{ mol/l HCl} (\mu = 0.5 \text{ mol/l}) \text{ po } 4.5 \text{ h ogrzewania w temperaturze } 308 \text{ K}$ $C - w 0.3 \text{ mol/l HCl} (\mu = 0.5 \text{ mol/l}) \text{ po } 12.5 \text{ h ogrzewania w temperaturze } 308 \text{ K}$ D - w 5% glukozie (0,5 mg/ml) gdzie: MMD - badana pochodna daunorubicyny (t_R = 7.8 min), P - produkt rozkładu (t_R = 3.19 min), Pw - wzorzec wewnętrzny (t_R = 13.5 min); roztwory były chronione przed światłem.

Precyzja metody

Metodę zbadano w parametrze precyzja bezpośrednia i pośrednia. Wyniki do precyzji pośredniej wygenerowane były przez drugiego analityka w tym samym dniu. Do oznaczeń przygotowano po jednym roztworze MMD o stężeniu 8,00·10⁻² mg/ml.

Przygotowane roztwory wprowadzono sześciokrotnie na kolumnę chromatograficzną.

Wyniki badania precyzji bezpośredniej przedstawiono w tabeli 6, natomiast wyniki precyzji pośredniej w tabeli 7.

Lp.	P _{MMD}	P _{IS}	P_{MMD}/P_{IS}	Wartość średnia standardowa P _{MMD} /P _{IS}	RSD%
1.	4144450	1590396	2,5871		
2.	4028917	1564132	2,5758	2.54	
3.	3898457	1514405	2,5742		1.04
4.	3911988	1531008	2,5552	2,30	1,04
5.	3947989	1555028	2,5389		
6.	3943209	1567155	2,5162		

Tabela 6. Wyniki precyzji bezpośredniej oznaczania MMD ($c = 8,00 \cdot 10^{-2} \text{ mg/ml}$) metodą HPLC

Tabela 7. Wyniki precyzji pośredniej oznaczania MMD ($c = 8,00 \cdot 10^{-2}$ mg/ml) metodą HPLC

Lp.	Stosunek P _{MMD} /P _{IS}				
	Analityk 1	Analityk 2			
1.	2,5871	2,4801			
2.	2,5758	2,6008			
3.	2,5742	2,4415			
4.	2,5552	2,4774			
5.	2,5389	2,4096			
6.	2,5162	2,4287			
Średnia	2,5579 2,4730				
Średnia	2,5155				
RSD [%]	2,64				

Liniowość metody

Liniowość metody HPLC badano w zakresie stężeń MMD (0,80 – 12,00)·10⁻²mg/ml (od 10% do 150% wartości nominalnej, gdzie 100% odpowiada ilości MMD wprowadzanej na kolumnę podczas badań trwałości).

Przygotowanie roztworu podstawowego MMD (roztwór A)

Odważono dokładnie 8,0 mg MMD, dodano 20 ml wody i mieszano do rozpuszczenia. Roztwór przechowywano w łaźni z lodem, chroniąc od światła.

Przygotowanie roztworu wzorca wewnętrznego (roztwór B)

Odważono dokładnie 5,0 mg chlorowodorku chininy do kolby miarowej o pojemności 100 ml. Dodano około 50 ml wody, substancję rozpuszczono i uzupełniono wodą do 100,0 ml.

W tabelach 8 i 9 przedstawiono wyniki badań liniowości metody HPLC oraz ich ocenę statystyczną.

Lp.	Poziom nominalnego stężenia MMD	c_{MMD} $\cdot 10^{-2} mg/ml$	P _{MMD}	P _W	P_{MMD}/P_{W}
1.	100/	0.80	430402	1657894	0,2596
2.	10%	0,80	344311	1622627	0,2122
3.			2681319	1587651	1,6889
4.	80%	6,40	2613529	1569424	1,6653
5.			2636536	1601111	1,6467
6.			3500937	1624399	2,1552
7.	100%	8,00	3252436	1519859	2,1400
8.			3182253	1586180	2,0062
9.			3755798	1511415	2,4850
10.	120%	9,60	3885321	1606738	2,4181
11.			3925007	1578994	2,4858
12.	150%	12.00	4620442	1488577	3,1039
13.	20070	12,00	4796639	1540945	3,1128

 Tabela 8.
 Odpowiedź detektora podczas badania liniowości metody

Tabela 9. Wyniki oznaczania MMD oraz ocena statystyczna prostych y = ax + b i y = ax

Lp.	C _{MMD}	Wartość średnia standardowa	Ocena statysty	yczna prostych		
1	$\cdot 10^{-2}$ mg/ml	P_{MMD}/P_{W}	y = ax + b	y = ax		
1.	0,80	0,2359	$a = 0,4467 \pm 0,0134$			
2.	6,40	1,6667	$b = 0,0323 \pm 0,0634$ r = 0,9999 $t_b = 1,6210$ $S_a = 0,0042$ $S_b = 0,0199$ $S_y = 0,0203$	$a = 0,4528 \pm 0,0116$		
3.	8,00	2,1005		r = 0,9999 $S_a = 0,0036$		
4.	9,60	2,4630		$S_y = 0,0176$		
5.	12,00	3,1083				

Zależność $P_{MMD}/P_W = f(c)$ MMD jest prostoliniowa. Zbadano istotność współczynnika *b* i stwierdzono, że wartość $t_b = b/S_b = 1,621$ jest mniejsza od wartości krytycznej równej 3,182, co wskazuje, że wartość *b* = 0,0323 ± 0,0634 jest nieistotna (*b* = 0), zatem zależność $P_{MMD}/P_W = f(c)$ opisuje równanie *y* = *ax*.

Granica detekcji i oznaczalności metody

Granicę detekcji (DL) i oznaczalności (QL) dla MMD obliczono z następujących wzorów:

$$DL = 3.3 \cdot \frac{S_y}{a} \qquad QL = 10 \cdot \frac{S_y}{a}$$

gdzie: S_y – odchylenie standardowe, a – nachylenie krzywej kalibracji

Otrzymano następujące wyniki:

- DL dla walidowanej metody = $0,26 \mu g MMD$
- QL dla walidowanej metody = $0.87 \mu g MMD$

Podsumowanie parametrów walidacyjnych

Podsumowanie parametrów walidacyjnych przedstawiono w tabeli 10.

Tabela 10.	Podsumowanie	parametrów	walidacyjnych	metody HPLC
------------	--------------	------------	---------------	-------------

Badany parametr	Kryterium akceptacji	Wynik	
Selektywność • wpływ substancji interferujących	Rozdział pików substancji badanej od produktów rozkła- du i wzorca wewnętrznego	Spełnia kryteria akceptacji	
Precyzja			
 powtarzalność 	$RSD \le 5\%$	RSD = 1,04	
 precyzja pośrednia 	$RSD \le 5\%$	RSD = 2,60	
Liniowość			
 współczynnik korelacji (r) 	≥ 0,9900	0,9999	
Granica			
 detekcji 	0,26 µg		
 oznaczalności 	0,87 µg		
Stabilność roztworu substancji ba- danej i wzorca wewnętrznego	 Roztwory substancji badanej przechowywane w wodzie z lodem i chronione od światła zachowywały trwałość 2 h 		

4.6.2. Metoda UV-VIS

Liniowość

Liniowość metody UV-VIS badano w zakresie stężeń MMD od 0,012 do 0,060 mg/ml.

Przygotowanie roztworu podstawowego MMD oraz roztworów do badania liniowości

Do kolby miarowej pojemności 25 ml, odważono dokładnie 25,0 mg MMD, rozpuszczono i uzupełniono wodą do 25,0 ml. Roztwór podstawowy rozcieńczano celem uzyskania odpowiednigo stężenia MMD.

Wykonano wykres zależności absorbancji (A_i) od stężenia. Uzyskane wyniki przedstawiono w tabeli 11.

Lp.	C _{MMD}	Ai	Ocena statystyc	czna prostych	
- F .	mg/ml	1	y = ax + b	y = ax	
1.	0,012	0,1400			
2.	0,016	0,1950			
3.	0,020	0,2520			
4.	0,024	0,3410	$a = 13,29 \pm 0,99$ $b = 0.001 \pm 0.034$	$a = 13,31 \pm 0,93$ r = 0,9958 $S_a = 0,4048$ $S_y = 0.0181$	
5.	0,028	0,3960	r = 0.9958		
6.	0,032	0,4440	$t_b = 0.0341$ $S_a = 0.4294$		
7.	0,036	0,4880	$S_b = 0.0149$ $S_y = 0.0192$	5y - 0,0101	
8.	0,040	0,5409			
9.	0,048	0,6371			
10.	0,060	0,7738			

Tabela 11. Zależność $A_i = f(c)$ dla MMD oraz ocena statystyczna prostych y = ax + b i y = ax

Zależność $A_i = f(c)$ dla MMD jest prostoliniowa. Zbadano istotność współczynnika *b* i stwierdzono, że wartość $t_b = b/S_b$ (0,0541) jest mniejsza od wartości krytycznej, co wskazuje, że wartość $b = 0,001 \pm 0,034$ jest nieistotna (b = 0), zatem zależność $A_i = f(c)$ dla MMD opisuje równanie y = ax.

Precyzja

W celu wyznaczenia precyzji metody przygotowano cztery serie roztworów MMD o następujących stężeniach MMD: 0,020, 0,024, 0,032 i 0,040 mg/ml.

Wyniki pomiarów absorbancji dla poszczególnych serii przedstawiono w tabeli 12.

Le	A ₁	A ₂	A ₃	A_4
Lp.	0,020 mg/ml	0,024 mg/ml	0,032 mg/ml	0,040 mg/ml
1.	0,3363	0,4255	0,5291	0,6253
2.	0,3363	0,4258	0,5291	0,6258
3.	0,3397	0,4276	0,5303	0,6268
4.	0,3397	0,4274	0,5326	0,6269
5.	0,3396	0,4299	0,5310	0,6279
б.	0,3397	0,4290	0,5329	0,6278
Średnia	0,3386	0,4275	0,5308	0,6268
RSD	0,515%	0,404%	0,312%	0,167%

Tabela 12. Wyniki oznaczania precyzji metody UV-VIS

Granica detekcji i oznaczalności metody

Granicę detecji i oznaczalności wyznaczono z wzorów podanych przy walidacji metody HPLC i dla metody UV-VIS wynoszą one odpowiednio:

- DL dla walidowanej metody = $4,49 \cdot 10^{-3}$ mg/ml MMD
- QL dla walidowanej metody = $1,27 \cdot 10^{-2}$ mg/ml MMD

Podsumowanie parametrów walidacyjnych

Podsumowanie parametrów walidacyjnych przedstawiono w tabeli 13.

Tabela 13.Podsumowanie parametrów walidacyjnych metody spektrofotometrycznej oznaczania
MMD w roztworach wodnych

Badany parametr	Kryterium akceptacji	Wynik	
Liniowość			
 współczynnik korelacji (r) 	≥ 0,9900	0,9958	
Precyzja	$RSD \le 5\%$	Spełnia kryterium akceptacji	
Granica			
 detekcji 	$4,49 \cdot 10^{-3} \text{ mg/ml}$		
 oznaczalności 	$1,27 \cdot 10^{-2} \text{ mg/ml}$		

4.7. Ocena trwałości MMD w roztworach wodnych

Warunki badań kinetycznych

Wszystkie roztwory z badaną substancją chroniono przed dostępem światła

Roztwory o odpowiednim pH uzyskano stosując:

- kwas solny; pH 0,43 1,39
- bufor fosforanowy; pH 1,89 3,10 i pH 6,13 7,50
- bufor octanowy; pH 4,01 5,65
- bufor boranowy; pH 7,51 9,43
- roztwory wodorotlenku sodu; pH 11,64 13,71

Badania prowadzono przy stałej wartości siły jonowej $\mu = 0,50 \text{ mol/l}, \text{ dodając odpowied-nie ilości roztworu chlorku sodu o stężeniu 4,0 mol/l.}$

Zbadano również wpływ siły jonowej na trwałość MMD w 0,10 mol/l kwasie solnym i 0,10 mol/l roztworze wodorotlenku sodu.

Wartości pH badanych roztworów mierzono w temperaturze reakcji, natomiast w kwasie solnym i w roztworach wodorotlenku sodu obliczono z następujących wzorów:

$$pH = -log f_{HCl} \cdot [HCl]$$

$$pOH = pK_w + \log f_{NaOH} \cdot [NaOH]$$

Współczynniki aktywności f_{NaOH} i f_{HCl} zaczerpnięto z pismiennictwa [89] lub otrzymano przez interpolację lub ekstrapolację danych literaturowych.

Roztwory o odpowiednim składzie i stężeniu, termostatowano w temperaturze badania, a następnie dodawano 1,0 ml roztworu badanej substancji o stężeniu 2,1 mg/ml i mieszano.

W określonych odstępach czasu, zależnych od szybkości reakcji rozkładu badanej substancji, do probówki pobierano 0,5 ml badanego roztworu i umieszczano go w łaźni z lodem. Próbki badanej substancji w roztworach o pH powyżej 6 doprowadzano do pH ok. 2,0 kwasem solnym o odpowiednim stężeniu. Przed wprowadzeniem na kolumnę, dodawano 0,5 ml roztworu wzorca wewnętrznego (roztwór chlorowodorku chininy o stężeniu 50 µg/ml).

Na kolumnę chromatograficzną wprowadzano 50 µl analizowanych roztworów i rejestrowano piki badanej substancji, produktów jej rozkładu i wzorca wewnętrznego.

Obserwowane stałe szybkości reakcji

Rozkład MMD w roztworach wodnych zachodzi zgodnie z reakcją pseudopierwszego rzędu względem stężenia substratu, co opisuje równanie:

$$\ln (\mathbf{P}_i/\mathbf{P}_w)_t = \ln (\mathbf{P}_i/\mathbf{P}_w)_0 - \mathbf{k}_{obs} \cdot \mathbf{t}$$

gdzie: $P_0 i P_i - pole powierzchni piku MMD w czasie t = 0 i t_i$ $P_w - pole powierzchni piku wzorca wewnętrznego - chlorowodorku chininy.$

Półlogarytmiczne wykresy zależności c = $(P_i/P_w)_t/(P_i/P_w)_0 \cdot 100 = f(t)$ są prostoliniowe, a ich nachylenie jest miarą szybkości reakcji (-k_{obs}).

Metodą najmniejszych kwadratów wyznaczono następujące parametry kinetyczne równań y = ax + b, opisujących rozkład MMD:

- $a \pm \Delta a, b \pm \Delta b$
- błąd standardowy S_a
- współczynnik korelacji liniowej r.

Wartości $\pm \Delta a$ i $\pm \Delta b$ obliczono dla f = n – 2 stopni swobody i α = 0,05. Do obliczeń matematycznych wykorzystano arkusz kalkulacyjny Excel.

Wyniki badań przedstawiono poniżej, odpowiednio w tabelach 14 - 39 i na rycinach 13 - 42.

Obserwowane stałe szybkości reakcji rozkładu MMD w kwasie solnym

Wommhi noglaii	Parametry kinetyczne					
w arunki reakcji	$a \pm \Delta a [\min^{-1}]$	$k \pm \Delta k [s^{-1}]$	Sa	r	n	
[HCl] = 0,50 mol/l, pH = 0,42	$-(1,72\pm0,01)\cdot10^{-2}$	$(2,86 \pm 0,22) \cdot 10^{-4}$	5,4.10-4	-0,9970	8	
[HCl] = 0,40 mol/l, pH = 0,52	$-(1,45\pm0,05)\cdot10^{-2}$	$(2,41\pm0,08)\cdot10^{-4}$	2,0.10-4	-0,9994	8	
[HCl] = 0,30 mol/l, pH = 0,64	$-(1,12\pm0,03)\cdot10^{-2}$	$(1,87 \pm 0,06) \cdot 10^{-4}$	1,4.10-4	-0,9995	8	
[HCl] = 0,20 mol/l, pH = 0,82	$-(7,88\pm0,39)\cdot10^{-3}$	$(1,31 \pm 0,06) \cdot 10^{-4}$	0,002	-0,9988	8	
[HCl] = 0,10 mol/l, pH = 1,10	$-(3,85\pm0,28)\cdot10^{-3}$	$(6,41\pm0,47)\cdot10^{-5}$	1,2.10-4	-0,9967	9	
[HCl] = 0,05 mol/l, pH = 1,38	$-(1,57\pm0,05)\cdot10^{-3}$	$(2,61 \pm 0,07) \cdot 10^{-5}$	1,8.10-5	-0,9996	8	
[HCl] = 0,01 mol/l, pH = 2,04	$-(3,43\pm0,98)\cdot10^{-4}$	$(5,71 \pm 1,64) \cdot 10^{-6}$	4,2.10-5	-0,9520	9	

Tabela 14. Parametry kinetyczne reakcji rozkładu MMD w kwasie solnym, w temperaturze 313 K $(\mu = 0.50 \text{ mol/l})$

Rycina 13. Półlogarytmiczne wykresy c, % = f(t) reakcji rozkładu MMD w kwasie solnym (0,01 – 0,50 mol/l), w temperaturze 313 K ($\mu = 0,50$ mol/l).

Warrahi mahaii	Parametry kinetyczne					
w arunki reakcji	$a \pm \Delta a [\mathrm{h}^{-1}]$	$k \pm \Delta k [s^{-1}]$	S_{a}	r	n	
[HCl] = 0,50 mol/l, pH = 0,42	$-(4,79\pm0,38)\cdot10^{-1}$	$(1,33\pm0,11)\cdot10^{-4}$	0,016	-0,9966	8	
[HCl] = 0,40 mol/l, pH = 0,52	$-(3,78\pm0,41)\cdot10^{-1}$	$(1,05\pm0,11)\cdot10^{-4}$	0,017	-0,9941	8	
[HCl] = 0,30 mol/l, pH = 0,64	$-(3,13\pm0,23)\cdot10^{-1}$	$(8,70\pm0,64)\cdot10^{-5}$	0,010	-0,9966	9	
[HCl] = 0,20 mol/l, pH = 0,82	$-(2,42\pm0,13)\cdot10^{-1}$	$(6,73\pm0,35)\cdot10^{-5}$	0,005	-0,9983	9	
[HCl] = 0,10 mol/l, pH = 1,10	$-(1,00\pm0,04)\cdot10^{-1}$	$(2,79\pm0,12)\cdot10^{-5}$	0,002	-0,9991	8	
[HCl] = 0,05 mol/l, pH = 1,38	$-(0,47\pm0,04)\cdot10^{-1}$	$(1,30\pm0,11)\cdot10^{-5}$	0,002	-0,9955	9	
[HCl] = 0,01 mol/l, pH = 2,04	$-(0,11\pm0,01)\cdot10^{-1}$	$(2,93\pm0,32)\cdot10^{-6}$	$4,8 \cdot 10^{-4}$	-0,9939	8	

Tabela 15. Parametry kinetyczne reakcji rozkładu MMD w kwasie solnym, w temperaturze 308 K $(\mu = 0.50 \text{ mol/l})$

Rycina 14. Półlogarytmiczne wykresy c, % = f(t) reakcji rozkładu MMD w kwasie solnym (0,01 – 0,50 mol/l), w temperaturze 308 K ($\mu = 0,50$ mol/l).

Wamunki raakaji	Parametry kinetyczne						
w arunki reakcji	$a \pm \Delta a \ [h^{-1}]$	$k \pm \Delta k [s^{-1}]$	S_{a}	r	n		
[HCl] = 0,50 mol/l, pH = 0,42	$-(2,33\pm0,14)\cdot10^{-1}$	$(6,49\pm0,38)\cdot10^{-5}$	0,006	-0,9979	9		
[HCl] = 0,40 mol/l, pH = 0,52	$-(1,87\pm0,11)\cdot10^{-1}$	$(5,21\pm0,30)\cdot10^{-5}$	0,006	-0,9979	9		
[HCl] = 0,30 mol/l, pH = 0,64	$-(1,54\pm0,15)\cdot10^{-1}$	$(4,27\pm0,43)\cdot10^{-5}$	0,006	-0,9950	8		
[HCl] = 0,20 mol/l, pH = 0,82	$-(1,14\pm0,13)\cdot10^{-1}$	$(3,16\pm0,36)\cdot10^{-5}$	0,005	-0,9936	8		
[HCl] = 0,10 mol/l, pH = 1,10	$-(4,72\pm0,04)\cdot10^{-2}$	$(1,31\pm0,12)\cdot10^{-5}$	0,002	-0,9957	8		
[HCl] = 0,05 mol/l, pH = 1,38	$-(2,08\pm0,02)\cdot10^{-2}$	$(5,77\pm0,46)\cdot10^{-6}$	6,7.10-4	-0,9969	8		
[HCl] = 0,01 mol/l, pH = 2,04	$-(5,12\pm1,47)\cdot10^{-3}$	$(1,42\pm0,41)\cdot10^{-6}$	6,0.10-4	-0,9613	8		

Tabela 16. Parametry kinetyczne reakcji rozkładu MMD w kwasie solnym, w temperaturze 303 K $(\mu = 0.50 \text{ mol/l})$

Rycina 15. Półlogarytmiczne wykresy c, % = f(t) reakcji rozkładu MMD w kwasie solnym (0,01 – 0,50 mol/l), w temperaturze 303 K ($\mu = 0,50$ mol/l).

Wommiti nostraii	Parametry kinetyczne					
w arunki reakcji	$a \pm \Delta a [h^{-1}]$	$k \pm \Delta k [s^{-1}]$	Sa	r	n	
[HCl] = 0,50 mol/l, pH = 0,42	$-(1,15\pm0,18)\cdot10^{-1}$	$(3,19\pm0,50)\cdot10^{-5}$	0,007	-0,9880	8	
[HCl] = 0,40 mol/l, pH = 0,52	$-(9,58\pm0,08)\cdot10^{-2}$	$(2,66 \pm 0,21) \cdot 10^{-5}$	0,003	-0,9968	8	
[HCl] = 0,30 mol/l, pH = 0,64	$-(7,85\pm0,06)\cdot10^{-2}$	$(2,18\pm0,16)\cdot10^{-5}$	0,002	-0,9974	8	
[HCl] = 0,20 mol/l, pH = 0,82	$-(5,83\pm0,05)\cdot10^{-2}$	$(1,62\pm0,13)\cdot10^{-5}$	0,002	-0,9969	8	
[HCl] = 0,10 mol/l, pH = 1,10	$-(2,15\pm0,02)\cdot10^{-2}$	$(5,96\pm0,65)\cdot10^{-6}$	9,6.10-4	-0,9941	8	
[HCl] = 0,05 mol/l, pH = 1,38	$-(1,07\pm0,01)\cdot10^{-2}$	$(2,96\pm0,20)\cdot10^{-6}$	3,0.10-4	-0,9977	8	
[HCl] = 0,01 mol/l, pH = 2,04	$-(2,66\pm0,66)\cdot10^{-3}$	$(7,38 \pm 1,83) \cdot 10^{-7}$	2,8.10-4	-0,9636	9	

Tabela 17. Parametry kinetyczne reakcji rozkładu MMD w kwasie solnym, w temperaturze 298 K $(\mu = 0.50 \text{ mol/l})$

Rycina 16. Półlogarytmiczne wykresy c, % = f(t) reakcji rozkładu MMD w kwasie solnym (0,01 – 0,50 mol/l), w temperaturze 298 K ($\mu = 0,50$ mol/l).

Tabela 18. Parametry kinetyczne reakcji rozkładu MMD w 0,1 mol/l kwasie solnym, w temperaturze 343 K, $\mu = 0,50$ mol/l, $\mu = 0,40$ mol/l, $\mu = 0,30$ mol/l, $\mu = 0,20$ mol/l, $\mu = 0,10$ mol/l

Wammiri maalaaii	Parametry kinetyczne						
w arunki teakeji	$a \pm \Delta a [\min^{-1}]$	$k \pm \Delta k [s^{-1}]$	S_{a}	r	n		
$[HC1] = 0,10 \text{ mol/l}, \mu = 0,50 \text{ mol/l}$	$-(1,87\pm0,06)\cdot10^{-1}$	$(3,12\pm0,10)\cdot10^{-3}$	0,002	-0,9995	8		
$[HC1] = 0,10 \text{ mol/l}, \mu = 0,40 \text{ mol/l}$	$-(1,69\pm0,06)\cdot10^{-1}$	$(2,82\pm0,11)\cdot10^{-3}$	0,003	-0,9992	8		
$[HC1] = 0,10 \text{ mol/l}, \mu = 0,30 \text{ mol/l}$	$-(1,53\pm0,16)\cdot10^{-1}$	$(2,56\pm0,26)\cdot10^{-3}$	0,006	-0,9948	8		
$[HC1] = 0,10 \text{ mol/l}, \mu = 0,20 \text{ mol/l}$	$-(1,22\pm0,04)\cdot10^{-1}$	$(2,04\pm0,07)\cdot10^{-3}$	0,002	-0,9993	8		
[HCl] = 0,10 mol/l, μ = 0,10 mol/l	$-(1,13\pm0,08)\cdot10^{-1}$	$(1,89\pm0,13)\cdot10^{-3}$	0,003	-0,9969	8		

Rycina 17. Półlogarytmiczne wykresy c, % = f(t) reakcji rozkładu MMD w 0,10 mol/l kwasie solnym, w temperaturze 343 K ($\mu = 0,10 - 0,50$ mol/l).

Obserwowane stałe szybkości reakcji rozkładu MMD w roztworze wodorotlenku sodu

Wamali malaii	Parametry kinetyczne						
w arunki reakcji	$a \pm \Delta a [\min^{-1}]$	$k \pm \Delta k [s^{-1}]$	S_{a}	r	n		
[NaOH] = 0,50 mol/l	$-(6,22\pm0,53)\cdot10^{-1}$	$(10,37\pm0,88)\cdot10^{-3}$	0,002	-0,9950	9		
[NaOH] = 0,40 mol/l	$-(5,96\pm0,30)\cdot10^{-1}$	$(9,93 \pm 0,51) \cdot 10^{-3}$	0,012	-0,9990	8		
[NaOH] = 0,30 mol/l	$-(6,17\pm0,55)\cdot10^{-1}$	$(10,3\pm0,92)\cdot10^{-3}$	0,023	-0,9950	9		
[NaOH] = 0,20 mol/l	$-(5,98\pm0,50)\cdot10^{-1}$	$(9,96 \pm 0,84) \cdot 10^{-3}$	0,051	-0,9960	9		
[NaOH] = 0,10 mol/l	$-(5,27\pm0,33)\cdot10^{-1}$	$(8,79\pm0,55)\cdot10^{-3}$	0,014	-0,9970	9		
[NaOH] = 0,05 mol/l	$-(5,74\pm0,39)\cdot10^{-1}$	$(9,56\pm0,65)\cdot10^{-3}$	0,017	-0,9970	9		

Tabela 19. Parametry kinetyczne reakcji rozkładu MMD w roztworze wodorotlenku sodu, w temperaturze 313 K ($\mu = 0,50 \text{ mol/l}$)

Rycina 18. Półlogarytmiczne wykresy c, % = f(t) reakcji rozkładu MMD w roztworze wodorotlenku sodu, w temperaturze 313 K, ($\mu = 0.50$ mol/l).

Wammhi naabaii	Parametry kinetyczne						
w arunki teakeji	$a \pm \Delta a [\min^{-1}]$	$k \pm \Delta k [s^{-1}]$	S_{a}	r	n		
[NaOH] = 0,50 mol/l	$-(4,12\pm0,19)\cdot10^{-1}$	$(6,86 \pm 0,32) \cdot 10^{-3}$	0,008	-0,9990	9		
[NaOH] = 0,40 mol/l	$-(4,26\pm0,63)\cdot10^{-1}$	$(7,10\pm1,06)\cdot10^{-3}$	0,026	-0,9890	8		
[NaOH] = 0,30 mol/l	$-(4,26\pm0,29)\cdot10^{-1}$	$(7,10\pm0,48)\cdot10^{-3}$	0,040	-0,9980	8		
[NaOH] = 0,20 mol/l	$-(4,09\pm0,26)\cdot10^{-1}$	$(6,81 \pm 0,43) \cdot 10^{-3}$	0,010	-0,9980	8		
[NaOH] = 0,10 mol/l	$-(3,88\pm0,67)\cdot10^{-1}$	$(6,46 \pm 1,11) \cdot 10^{-3}$	0,027	-0,9850	8		
[NaOH] = 0,05 mol/l	$-(3,61\pm0,37)\cdot10^{-1}$	$(6,72 \pm 0,84) \cdot 10^{-3}$	0,021	-0,9920	8		

Tabela 20. Parametry kinetyczne reakcji rozkładu MMD w roztworze wodorotlenku sodu, w temperaturze 308 K ($\mu = 0,50 \text{ mol/l}$)

Rycina 19. Półlogarytmiczne wykresy c, % = f(t) reakcji rozkładu MMD w roztworze wodorotlenku sodu, w temperaturze 308 K, ($\mu = 0,50$ mol/l).

Womunki nookoii	Parametry kinetyczne						
warunki teakeji	$a \pm \Delta a [\min^{-1}]$	$k \pm \Delta k [s^{-1}]$	S_{a}	r	n		
[NaOH] = 0,50 mol/l	$-(2,86\pm0,24)\cdot10^{-1}$	$(4,76\pm0,40)\cdot10^{-3}$	0,010	-0,9970	8		
[NaOH] = 0,40 mol/l	$-(2,72\pm0,18)\cdot10^{-1}$	$(4,53 \pm 0,31) \cdot 10^{-3}$	0,008	-0,9980	8		
[NaOH] = 0,30 mol/l	$-(2,73\pm0,25)\cdot10^{-1}$	$(4,55\pm0,41)\cdot10^{-3}$	0,010	-0,9960	8		
[NaOH] = 0,20 mol/l	$-(2,80\pm0,26)\cdot10^{-1}$	$(4,67 \pm 0,43) \cdot 10^{-3}$	0,011	-0,9950	9		
[NaOH] = 0,10 mol/l	$-(2,69\pm0,19)\cdot10^{-1}$	$(4,48 \pm 0,31) \cdot 10^{-3}$	0,008	-0,9970	9		
[NaOH] = 0,05 mol/l	$-(2,64\pm0,29)\cdot10^{-1}$	$(4,39 \pm 0,48) \cdot 10^{-3}$	0,012	-0,9940	8		

Tabela 21. Parametry kinetyczne reakcji rozkładu MMD w roztworze wodorotlenku sodu, w temperaturze 303 K ($\mu = 0,50 \text{ mol/l}$)

Rycina 20. Półlogarytmiczne wykresy c, % = f(t) reakcji rozkładu MMD w roztworze wodorotlenku sodu, w temperaturze 303 K, ($\mu = 0,50$ mol/l).

Wammhi mahaii	Parametry kinetyczne						
warunki teakeji	$a \pm \Delta a [\min^{-1}]$	$k \pm \Delta k [s^{-1}]$	S_{a}	r	n		
[NaOH] = 0,50 mol/l	$-(1,90\pm0,24)\cdot10^{-1}$	$(3,17\pm0,40)\cdot10^{-3}$	0,010	-0,9920	8		
[NaOH] = 0,40 mol/l	$-(1,72\pm0,23)\cdot10^{-1}$	$(2,87 \pm 0,39) \cdot 10^{-3}$	0,010	-0,9890	9		
[NaOH] = 0,30 mol/l	$-(2,12\pm0,18)\cdot10^{-1}$	$(3,54\pm0,31)\cdot10^{-3}$	0,008	-0,9950	9		
[NaOH] = 0,20 mol/l	$-(2,12\pm0,49)\cdot10^{-1}$	$(3,54\pm0,82)\cdot10^{-3}$	0,019	-0,9800	7		
[NaOH] = 0,10 mol/l	$-(1,81\pm0,24)\cdot10^{-1}$	$(3,01\pm0,40)\cdot10^{-3}$	0,010	-0,9880	10		
[NaOH] = 0,05 mol/l	$-(1,81\pm0,18)\cdot10^{-1}$	$(3,02\pm0,29)\cdot10^{-3}$	0,007	-0,9940	9		

Tabela 22. Parametry kinetyczne reakcji rozkładu MMD w roztworze wodorotlenku sodu, w temperaturze 298 K ($\mu = 0.50 \text{ mol/l}$)

Rycina 21. Półlogarytmiczne wykresy c, % = f(t) reakcji rozkładu MMD w roztworze wodorotlenku sodu, w temperaturze 298 K, ($\mu = 0.50 \text{ mol/l}$).

Tabela 23. Parametry kinetyczne reakcji rozkładu MMD w roztworze 0,1 mol/l wodorotlenku sodu, w temperaturze 308 K, $\mu = 0,50 \text{ mol/l}, \mu = 0,40 \text{ mol/l}, \mu = 0,30 \text{ mol/l}, \mu = 0,20 \text{ mol/l}, \mu = 0,10 \text{ mol/l}$

	Parametry kinetyczne				
Warunki reakcji	$a \pm \Delta a [\min^{-1}]$	$k \pm \Delta k \ [s^{-1}]$	S_{a}	r	n
$[NaOH] = 0,10 \text{ mol/l}, \mu = 0,50 \text{ mol/l}$	$-(3,88\pm0,67)\cdot10^{-1}$	$(6,46 \pm 1,11) \cdot 10^{-3}$	0,028	-0,9850	8
$[NaOH] = 0,10 \text{ mol/l}, \mu = 0,40 \text{ mol/l}$	$-(4,04\pm0,47)\cdot10^{-1}$	$(6,73\pm0,80)\cdot10^{-3}$	0,020	-0,9930	8
$[NaOH] = 0,10 \text{ mol/l}, \mu = 0,30 \text{ mol/l}$	$-(3,83\pm0,32)\cdot10^{-1}$	$(6,38\pm0,54)\cdot10^{-3}$	0,013	-0,9960	8
$[NaOH] = 0,10 \text{ mol/l}, \mu = 0,20 \text{ mol/l}$	$-(3,61\pm0,27)\cdot10^{-1}$	$(6,02\pm0,44)\cdot10^{-3}$	0,011	-0,9960	9
$[NaOH] = 0,10 \text{ mol/l}, \mu = 0,10 \text{ mol/l}$	$-(3,79\pm0,27)\cdot10^{-1}$	$(6,32\pm0,44)\cdot10^{-3}$	0,011	-0,9970	9

Rycina 22. Półlogarytmiczne wykresy c, % = f(t) reakcji rozkładu MMD w roztworze 0,10 mol/l wodorotlenku sodu, w temperaturze 308 K ($\mu = 0,10 - 0,50$ mol/l).

Obserwowane stałe szybkości reakcji rozkładu MMD w buforze fosforanowym, pH 2,28 – 3,51

Tabela 24.	Parametry kinetyczne reakcji rozkładu MMD w buforze fosforanowym, w temperaturze
	313 K, $\mu = 0.50 \text{ mol/l}$

Warrahimahaii	Parametry kinetyczne					
w arunki reakcji	$a \pm \Delta a [\min^{-1}]$	$k \pm \Delta k [s^{-1}]$	Sa	r	n	
	рН 2,	28				
$B_{T} = 0,20 \text{ mol/l}$ [H ₃ PO ₄] = 0,114; [KH ₂ PO ₄] = 0,086	$-(6,91\pm0,85)\cdot10^{-4}$	$(1,15\pm0,14)\cdot10^{-5}$	3,473·10 ⁻⁵	-0,9925	8	
$B_T = 0,30 \text{ mol/l}$ [H ₃ PO ₄] = 0,171; [KH ₂ PO ₄] = 0,129	$-(6,90\pm0,76)\cdot10^{-4}$	$(1,15\pm0,13)\cdot10^{-5}$	3,111.10-5	-0,9939	8	
$B_T = 0,40 \text{ mol/l}$ [H ₃ PO ₄] = 0,227; [KH ₂ PO ₄] = 0,173	$-(6,77\pm0,88)\cdot10^{-4}$	$(1,11\pm0,15)\cdot10^{-5}$	3,584·10 ⁻⁵	-0,9917	8	
	pH 2,	98				
$B_T = 0,30 \text{ mol/l}$ [H ₃ PO ₄] = 0,088; [KH ₂ PO ₄] = 0,212	$-(3,93\pm0,33)\cdot10^{-4}$	$(6,57\pm0,55)\cdot10^{-6}$	1,340.10-5	-0,9965	8	
	рН 3,	47				
$B_T = 0,20 \text{ mol/l}$ [H ₃ PO ₄] = 0,023; [KH ₂ PO ₄] = 0,177	$-(5,04\pm0,61)\cdot10^{-4}$	$(8,40\pm0,10)\cdot10^{-6}$	2,480.10-5	-0,9928	8	
$B_{T} = 0,30 \text{ mol/l}$ $[H_{3}PO_{4}] = 0,035; [KH_{2}PO_{4}] = 0,265$	$-(4,98\pm0,20)\cdot10^{-4}$	$(8,29\pm0,34)\cdot10^{-6}$	8,236.10-6	-0,9992	8	
$B_{T} = 0,40 \text{ mol/l}$ $[H_{3}PO_{4}] = 0,047; [KH_{2}PO_{4}] = 0,353$	$-(5,06\pm0,66)\cdot10^{-4}$	$(8,44 \pm 0,11) \cdot 10^{-6}$	2,703.10-5	-0,9992	8	

Rycina 23. Półlogarytmiczne wykresy c, % = f(t) reakcji rozkładu MMD w buforze fosforanowym o pH 2,28 (a) i 3,47 (b), w temperaturze 313 K , $\mu = 0,50$ mol/l.

Rycina 24. Półlogarytmiczne wykresy c, % = f(t) reakcji rozkładu MMD w buforze fosforanowym o pH 2,28, 2,98, 3,47, w temperaturze 313 K , $\mu = 0,50$ mol/l, B_T = 0,30 mol/l.

Wamanli na alaaii	Parametry kinetyczne						
w arunki reakcji	$a \pm \Delta a \ [h^{-1}]$	$k \pm \Delta k \ [s^{-1}]$	Sa	r	n		
$pH = 2,49, B_T = 0,30 \text{ mol/l}$ $[H_3PO_4] = 0,171$ $[KH_2PO_4] = 0,129$	$-(7,16\pm0,10)\cdot10^{-3}$	$(1,99 \pm 0,27) \cdot 10^{-6}$	4,123.10-4	-0,9889	9		
$pH = 3,06, B_T = 0,30 \text{ mol/l}$ $[H_3PO_4] = 0,088$ $[KH_2PO_4] = 0,212$	$-(1,16\pm0,11)\cdot10^{-2}$	$(3,21\pm0,31)\cdot10^{-6}$	4,624.10-4	-0,9952	8		
$pH = 3,38, B_T = 0,30 \text{ mol/l}$ $[H_3PO_4] = 0,035$ $[KH_2PO_4] = 0,265$	$-(1,67\pm0,18)\cdot10^{-2}$	$(4,65\pm0,51)\cdot10^{-6}$	7,494·10 ⁻⁴	-0,9940	8		

Tabela 25. Parametry kinetyczne reakcji rozkładu MMD w buforze fosforanowym, w temperaturze $308 \text{ K}, \mu = 0.50 \text{ mol/l}, (B_T = 0.30 \text{ mol/l})$

Rycina 25. Półlogarytmiczne wykresy c, % = f(t) reakcji rozkładu MMD w buforze fosforanowym o pH 2,49, 3,06, 3,38, w temperaturze 308 K , $\mu = 0,50$ mol/l, $B_T = 0,30$ mol/l.

Womunici moglacii	Parametry kinetyczne					
w arunki reakcji	$a \pm \Delta a \ [h^{-1}]$	$k \pm \Delta k \ [s^{-1}]$	S_{a}	r	n	
$pH = 2,42, B_T = 0,30 \text{ mol/l}$ $[H_3PO_4] = 0,171$ $[KH_2PO_4] = 0,129$	$-(4,39\pm0,38)\cdot10^{-3}$	$(1,22 \pm 0,11) \cdot 10^{-6}$	1,564·10 ⁻⁴	-0,9962	9	
$pH = 2,94, B_T = 0,30 \text{ mol/l}$ $[H_3PO_4] = 0,088$ $[KH_2PO_4] = 0,212$	$-(6,30\pm0,37)\cdot10^{-3}$	$(1,75\pm0,10)\cdot10^{-6}$	1,572·10 ⁻⁴	-0,9978	9	
$pH = 3,25, B_T = 0,30 \text{ mol/l}$ $[H_3PO_4] = 0,035$ $[KH_2PO_4] = 0,265$	$-(1,03\pm0,01)\cdot10^{-2}$	$(2,86 \pm 0,25) \cdot 10^{-6}$	3,783·10 ⁻⁴	-0,9953	9	

Tabela 26. Parametry kinetyczne reakcji rozkładu MMD w buforze fosforanowym, w temperaturze 303 K, $\mu = 0.50$ mol/l, (B_T = 0.30 mol/l)

Rycina 26. Półlogarytmiczne wykresy c, % = f(t) reakcji rozkładu MMD w buforze fosforanowym o pH 2,42, 2,94, 3,25, w temperaturze 303 K , $\mu = 0,50$ mol/l, $B_T = 0,30$ mol/l.
Tabela 27.	Parametry kinetyczne reakcji rozkładu MMD w buforze fosforanowym, w temperaturze
	298 K, $\mu = 0.50 \text{ mol/l}$, (B _T = 0.30 mol/l)

Womunki rookoji	Parametry kinetyczne					
w arunki reakcji	$a \pm \Delta a \ [h^{-1}]$	$k \pm \Delta k [s^{-1}]$	S_{a}	r	n	
$pH = 1,96, B_T = 0,30 \text{ mol/l}$ $[H_3PO_4] = 0,171$ $[KH_2PO_4] = 0,129$	$-(3,97\pm0,46)\cdot10^{-3}$	$(1,10\pm0,13)\cdot10^{-6}$	1,860.10-4	-0,9935	8	
$pH = 2,89, B_T = 0,30 \text{ mol/l}$ $[H_3PO_4] = 0,088$ $[KH_2PO_4] = 0,212$	$-(2,84\pm0,51)\cdot10^{-3}$	$(7,90 \pm 1,42) \cdot 10^{-7}$	2,092·10 ⁻⁴	-0,9842	8	
$pH = 3,38, B_T = 0,30 \text{ mol/l}$ $[H_3PO_4] = 0,035$ $[KH_2PO_4] = 0,265$	$-(4,20\pm0,46)\cdot10^{-3}$	$(1,17\pm0,13)\cdot10^{-6}$	1,880.10-4	-0,9940	8	

Półlogarytmiczne wykresy c, % = f(t) reakcji rozkładu MMD w buforze fosforanowym o pH 1,96, 2,89, 3,38, w temperaturze 298 K , μ = 0,50 mol/l, B_T = 0,30 mol/l. Rycina 27.

Obserwowane stałe szybkości reakcji rozkładu MMD w buforze octanowym, pH 3,95 – 5,93

Tabela 28. Parametry kinetyczne reakcji rozkładu MMD w buforze octanowym, w temperaturze 313 K, $\mu = 0.50$ mol/l

W/ 1' 1''	Parametry kinetyczne					
Warunki reakcji	$a \pm \Delta a [\min^{-1}]$	$k \pm \Delta k [s^{-1}]$	S _a	r	n	
	pH 4,11					
B _T = 0,35 mol/l [CH ₃ COOH] = 0,315; [CH ₃ COONa] = 0,035	$-(3,14\pm0,18)\cdot10^{-3}$	$(5,24 \pm 0,31) \cdot 10^{-5}$	7,659·10 ⁻⁵	-0,9982	8	
	pH 4,41				•	
B _T = 0,40 mol/l [CH ₃ COOH] = 0,32; [CH ₃ COONa] = 0,08	$-(6,99\pm0,47)\cdot10^{-3}$	$(1,16\pm0,08)\cdot10^{-4}$	1,921.10-4	-0,9977	8	
B _T = 0,30 mol/l [CH ₃ COOH] = 0,24; [CH ₃ COONa] = 0,06	$-(6,93\pm0,35)\cdot10^{-3}$	$(1,16\pm0,06)\cdot10^{-4}$	1,423.10-4	-0,9987	8	
$B_T = 0,20 \text{ mol/l}$ [CH ₃ COOH] = 0,16; [CH ₃ COONa] = 0,04	$-(6,57\pm0,42)\cdot10^{-3}$	$(1,10\pm0,07)\cdot10^{-4}$	1,615.10-4	-0,9985	7	
$B_T = 0,10 \text{ mol/l}$ [CH ₃ COOH] = 0,08; [CH ₃ COONa] = 0,02	$-(6,45\pm0,43)\cdot10^{-3}$	$(1,07\pm0,07)\cdot10^{-4}$	1,674.10-4	-0,9983	7	
	pH 4,86					
$B_{T} = 0,30 \text{ mol/l}$ [CH ₃ COOH] = 0,18; [CH ₃ COONa] = 0,12	$-(1,76\pm0,09)\cdot10^{-2}$	$(2,94 \pm 0,16) \cdot 10^{-4}$	3,854.10-4	-0,9986	8	
	pH 5,40					
B _T = 0,30 mol/l [CH ₃ COOH] = 0,09; [CH ₃ COONa] = 0,21	$-(6,20\pm0,05)\cdot10^{-2}$	$(1,03 \pm 0,08) \cdot 10^{-3}$	1,828.10-3	-0,9978	7	
	pH 5,92					
$B_{T} = 0,40 \text{ mol/l}$ [CH ₃ COOH] = 0,04; [CH ₃ COONa] = 0,36	$-(1,63\pm0,01)\cdot10^{-1}$	$(2,71 \pm 0,22) \cdot 10^{-3}$	5,482·10 ⁻³	-0,9966	8	
B _T = 0,30 mol/l [CH ₃ COOH] = 0,03; [CH ₃ COONa] = 0,27	$-(1,59\pm0,07)\cdot10^{-1}$	$(2,66 \pm 0,12) \cdot 10^{-3}$	2,910·10 ⁻³	-0,9990	8	
$B_T = 0,20 \text{ mol/l}$ [CH ₃ COOH] = 0,02; [CH ₃ COONa] = 0,18	$-(1,54\pm0,14)\cdot10^{-1}$	$(2,57 \pm 0,24) \cdot 10^{-3}$	5,897·10 ⁻³	-0,9956	8	
$B_T = 0,10 \text{ mol/l}$ [CH ₃ COOH] = 0,01; [CH ₃ COONa] = 0,09	$-(1,52\pm0,14)\cdot10^{-1}$	$(2,52 \pm 0,23) \cdot 10^{-3}$	5,724·10 ⁻³	-0,9957	8	

Rycina 28. Półlogarytmiczne wykresy c, % = f(t) reakcji rozkładu MMD w buforze octanowym o pH 4,41 (a) i 5,92 (b), w temperaturze 313 K, $\mu = 0,50$ mol/l.

Rycina 29. Półlogarytmiczne wykresy c, % = f(t) reakcji rozkładu MMD w buforze octanowym o pH 4,41, 4,86, 5,40 i 5,92, w temperaturze 313 K , $\mu = 0,50$ mol/l, $B_T = 0,30$ mol/l.

Womunici rookoji	Parametry kinetyczne				
w arunki reakcji	$a \pm \Delta a \; [\min^{-1}]$	$k \pm \Delta k \ [s^{-1}]$	S_{a}	r	n
$pH = 3,95, B_T = 0,30 \text{ mol/l}$ [CH ₃ COOH] = 0,24; [CH ₃ COONa] = 0,06	$-(1,15\pm0,33)\cdot10^{-1}$	$(4,26\pm0,54)\cdot10^{-5}$	1,330.10-2	-0,9781	8
$pH = 4,20, B_T = 0,30 \text{ mol/l}$ [CH ₃ COOH] = 0,24; [CH ₃ COONa] = 0,06	$-(3,95\pm0,61)\cdot10^{-3}$	$(6,58\pm0,61)\cdot10^{-5}$	1,501.10-4	-0,9957	8
$pH = 4,75, B_T = 0,30 \text{ mol/l}$ [CH ₃ COOH] = 0,18; [CH ₃ COONa] = 0,12	$-(1,07\pm0,04)\cdot10^{-2}$	$(1,79\pm0,06)\cdot10^{-4}$	1,449.10-4	-0,9995	7
$pH = 5,38, B_T = 0,30 \text{ mol/l}$ [CH ₃ COOH] = 0,09; [CH ₃ COONa] = 0,21	$-(3,57\pm0,25)\cdot10^{-2}$	$(5,95\pm0,41)\cdot10^{-4}$	1,012.10-3	-0,9976	8
$pH = 5,93, B_T = 0,30 \text{ mol/l}$ [CH ₃ COOH] = 0,03; [CH ₃ COONa] = 0,27	$-(1,02\pm0,08)\cdot10^{-1}$	$(1,71 \pm 0,13) \cdot 10^{-3}$	3,151.10-3	-0,9972	8

Tabela 29. Parametry kinetyczne reakcji rozkładu MMD w buforze octanowym, w temperaturze $308 \text{ K}, \mu = 0.50 \text{ mol/l}, (B_T = 0.30 \text{ mol/l})$

Rycina 30. Półlogarytmiczne wykresy c, % = f(t) reakcji rozkładu MMD w buforze octanowym o pH 3,95, 4,20, 4,75, 5,38, 5,93, w temperaturze 308 K, $\mu = 0,50$ mol/l, $B_T = 0,30$ mol/l.

Tabela 30. Parametry kinetyczne reakcji rozkładu MMD w buforze octanowym, w temperaturze 303 K, $\mu = 0.50 \text{ mol/l}$, (B_T = 0.30 mol/l)

Wamulti naglaji	Parametry kinetyczne				
Warunki Teakeji	$a \pm \Delta a [\min^{-1}]$	$k \pm \Delta k [s^{-1}]$	Sa	r	n
$pH = 3,96, B_T = 0,30 \text{ mol/l}$ [CH ₃ COOH] = 0,24; [CH ₃ COONa] = 0,06	$-(1,02\pm0,07)\cdot10^{-3}$	$(1,71 \pm 0,12) \cdot 10^{-5}$	2,881.10-5	-0,9976	8
$pH = 4,21, B_T = 0,30 \text{ mol/l}$ [CH ₃ COOH] = 0,24; [CH ₃ COONa] = 0,06	$-(2,17\pm0,06)\cdot10^{-3}$	$(3,62\pm0,10)\cdot10^{-5}$	2,487.10-5	-0,9996	8
$pH = 4,64, B_T = 0,30 \text{ mol/l}$ [CH ₃ COOH] = 0,18; [CH ₃ COONa] = 0,12	$-(6,18\pm0,57)\cdot10^{-3}$	$(1,03\pm0,09)\cdot10^{-4}$	2,389.10-4	-0,9948	9
$pH = 5,23, B_T = 0,30 \text{ mol/l}$ [CH ₃ COOH] = 0,09; [CH ₃ COONa] = 0,21	$-(1,96\pm0,08)\cdot10^{-2}$	$(3,26\pm0,13)\cdot10^{-4}$	3,085.10-4	-0,9992	8
$pH = 5,84, B_T = 0,30 \text{ mol/l}$ $[CH_3COOH] = 0,03; [CH_3COONa] = 0,27$	$-(5,61\pm0,67)\cdot10^{-2}$	$(9,36\pm0,11)\cdot10^{-4}$	2,616.10-3	-0,9946	7

Rycina 31. Półlogarytmiczne wykresy c, % = f(t) reakcji rozkładu MMD w buforze octanowym o pH 3,96, 4,21, 4,64, 5,23, 5,84, w temperaturze 303 K, $\mu = 0,50$ mol/l, $B_T = 0,30$ mol/l.

	Parametry kinetyczne				
Warunki reakcji	$a \pm \Delta a [\min^{-1}]$	$k \pm \Delta k [s^{-1}]$	$S_{ m a}$	r	n
$pH = 4,10, B_T = 0,30 \text{ mol/l}$ [CH ₃ COOH] = 0,24; [CH ₃ COONa] = 0,06	$-(5,72\pm0,71)\cdot10^{-4}$	$(9,53 \pm 1,19) \cdot 10^{-6}$	2,564.10-5	-0,9960	6
$pH = 4,39, B_T = 0,30 \text{ mol/l}$ [CH ₃ COOH] = 0,24; [CH ₃ COONa] = 0,06	$-(1,28\pm0,08)\cdot10^{-3}$	$(2,14\pm0,13)\cdot10^{-5}$	2,925.10-5	-0,9987	7
$pH = 4,78, B_T = 0,30 \text{ mol/l}$ [CH ₃ COOH] = 0,18; [CH ₃ COONa] = 0,12	$-(3,32\pm0,40)\cdot10^{-3}$	$(5,54 \pm 0,66) \cdot 10^{-5}$	1,623.10-4	-0,9929	8
pH = 5,30, B _T = 0,30 mol/l [CH3COOH] = 0,09; [CH3COONa] = 0,21	$-(1,07\pm0,09)\cdot10^{-2}$	$(1,78\pm0,15)\cdot10^{-4}$	3,618.10-4	-0,9966	8
pH = 5,87, $B_T = 0,30 \text{ mol/l}$ [CH3COOH] = 0,03; [CH3COONa] = 0,27	$-(3,56\pm0,30)\cdot10^{-2}$	$(5,94 \pm 0,50) \cdot 10^{-4}$	1,267.10-3	-0,9956	9

Tabela 31. Parametry kinetyczne reakcji rozkładu MMD w buforze octanowym, w temperaturze 298 K, $\mu = 0.50 \text{ mol/l}$, (B_T = 0.30 mol/l)

Rycina 32. Półlogarytmiczne wykresy c, % = f(t) reakcji rozkładu MMD w buforze octanowym o pH 4,10, 4,39, 4,78, 5,30, 5,87, w temperaturze 298 K, $\mu = 0,50$ mol/l, $B_T = 0,30$ mol/l.

Obserwowane stałe szybkości reakcji rozkładu MMD w buforze fosforanowym, pH 6,11 – 7,58

Tabela 32.	Parametry kinetyczne reakcji rozkładu MMD w buforze fosforanowym, w temperaturze
	313 K, $\mu = 0.50 \text{ mol/l}$

W/co.ul/ucol.c/	Parametry kinetyczne					
Warunki reakcji	$a \pm \Delta a \ [\min^{-1}]$	$k \pm \Delta k [s^{-1}]$	S_{a}	r	n	
	рН 6,11					
$B_{\rm T} = 0,40 \ mol/l \label{eq:BT}$ [KH_2PO4] = 0,34; [Na2HPO4] = 0,06	$-(1,86\pm0,17)\cdot10^{-1}$	$(3,09\pm0,28)\cdot10^{-3}$	6,980·10 ⁻³	-0,9958	8	
$B_T = 0,30 \text{ mol/l}$ [KH ₂ PO ₄] = 0,26; [Na ₂ HPO ₄] = 0,04	$-(1,79\pm0,90)\cdot10^{-1}$	$(2,98 \pm 0,15) \cdot 10^{-3}$	3,672·10 ⁻³	-0,9987	8	
$B_{T} = 0,20 \text{ mol/l}$ $[KH_{2}PO_{4}] = 0,17; [Na_{2}HPO_{4}] = 0,03$	$-(1,76\pm0,11)\cdot10^{-1}$	$(2,94 \pm 0,19) \cdot 10^{-3}$	4,635·10 ⁻³	-0,9979	8	
$B_{T} = 0,10 \text{ mol/l}$ $[KH_{2}PO_{4}] = 0,085; [Na_{2}HPO_{4}] = 0,015$	$-(1,81\pm0,16)\cdot10^{-1}$	$(3,02\pm0,26)\cdot10^{-3}$	6,495·10 ⁻³	-0,9962	8	
pH 6,48						
$B_{\rm T} = 0,20 \ mol/l$ $[KH_2PO_4] = 0,14; [Na_2HPO_4] = 0,06$	$-(3,06\pm0,27)\cdot10^{-1}$	$(5,09\pm0,45)\cdot10^{-3}$	1,106.10-2	-0,9961	8	
	pH 7,08					
$B_{\rm T} = 0,20 \ mol/l \label{eq:BT}$ [KH ₂ PO ₄] = 0,08; [Na ₂ HPO ₄] = 0,12	$-(4,55\pm0,50)\cdot10^{-1}$	$(7,58 \pm 0,84) \cdot 10^{-3}$	1,956.10-2	-0,9954	7	
	pH 7,56					
$B_{\rm T} = 0,20 \ mol/l \label{eq:BT}$ [KH ₂ PO ₄] = 0,04; [Na ₂ HPO ₄] = 0,16	$-(4,87\pm0,48)\cdot10^{-1}$	$(8,12\pm0,80)\cdot10^{-3}$	1,862.10-2	-0,9963	7	
$B_{T} = 0,15 \ mol/l \label{eq:BT}$ [KH_2PO4] = 0,03; [Na2HPO4] = 0,12	$-(5,00\pm0,59)\cdot10^{-1}$	$(8,33 \pm 0,99) \cdot 10^{-3}$	2,302.10-2	-0,9947	7	
$B_{T} = 0,125 \text{ mol/l}$ $[KH_{2}PO_{4}] = 0,025; [Na_{2}HPO_{4}] = 0,10$	$-(4,85\pm0,77)\cdot10^{-1}$	$(8,08 \pm 1,28) \cdot 10^{-3}$	2,989.10-2	-0,9906	7	
$B_{\rm T} = 0,10 \ mol/l$ [KH ₂ PO ₄] = 0,02; [Na ₂ HPO ₄] = 0,08	$-(4,89\pm0,58)\cdot10^{-1}$	$(8,15\pm0,97)\cdot10^{-3}$	2,261.10-2	-0,9947	7	

Rycina 33. Półlogarytmiczne wykresy c, % = f(t) reakcji rozkładu MMD w buforze fosforanowym o pH 6,11 (a) i 7,56 (b), w temperaturze 313 K, $\mu = 0,50$ mol/l.

Rycina 34. Półlogarytmiczne wykresy c, % = f(t) reakcji rozkładu MMD w buforze fosforanowym o pH 6,11, 6,48, 7,08 i 7,56, w temperaturze 313 K, $\mu = 0,50$ mol/l.

Wommlei noolooii	Parametry kinetyczne				
w arunki reakcji	$a \pm \Delta a \; [\min^{-1}]$	$k \pm \Delta k \ [s^{-1}]$	S_{a}	r	n
$pH = 6,10, B_{T} = 0,30 \text{ mol/l}$ $[KH_{2}PO_{4}] = 0,26; [Na_{2}HPO_{4}] = 0,04$	$-(1,15\pm0,05)\cdot10^{-1}$	$(1,92 \pm 0,08) \cdot 10^{-3}$	1,828·10 ⁻³	-0,999	7
$pH = 6,45, B_T = 0,20 \text{ mol/l}$ $[KH_2PO_4] = 0,14; [Na_2HPO_4] = 0,06$	$-(1,90\pm0,33)\cdot10^{-1}$	$(3,17\pm0,55)\cdot10^{-3}$	1,184.10-2	-0,992	6
$pH = 7,05, B_T = 0,20 \text{ mol/l}$ $[KH_2PO_4] = 0,08; [Na_2HPO_4] = 0,12$	$-(3,74\pm0,48)\cdot10^{-1}$	$(6,24\pm0,79)\cdot10^{-3}$	1,846.10-2	-0,994	7
$pH = 7,50, B_T = 0,15 \text{ mol/l}$ $[KH_2PO_4] = 0,03; [Na_2HPO_4] = 0,12$	$-(3,89\pm0,52)\cdot10^{-1}$	$(6,49 \pm 0,86) \cdot 10^{-3}$	2,003.10-2	-0,993	7

Tabela 33. Parametry kinetyczne reakcji rozkładu MMD w buforze fosforanowym, w temperaturze $308 \text{ K}, \mu = 0.50 \text{ mol/l}$

Rycina 35. Półlogarytmiczne wykresy c, % = f(t) reakcji rozkładu MMD w buforze fosforanowym o pH 6,10, 6,45, 7,05, 7,50, w temperaturze 308 K, $\mu = 0,50$ mol/l.

Warunki reakcji	Parametry kinetyczne				
	$a \pm \Delta a [\min^{-1}]$	$k \pm \Delta k [s^{-1}]$	Sa	r	n
$pH = 6,05, B_{T} = 0,30 \text{ mol/l}$ $[KH_{2}PO_{4}] = 0,26; [Na_{2}HPO_{4}] = 0,04$	$-(6,96\pm0,39)\cdot10^{-2}$	$(1,16\pm0,06)\cdot10^{-3}$	1,581.10-3	-0,998	8
$pH = 6,43, B_T = 0,20 \text{ mol/l}$ $[KH_2PO_4] = 0,14; [Na_2HPO_4] = 0,06$	$-(1,19\pm0,08)\cdot10^{-1}$	$(1,98 \pm 0,14) \cdot 10^{-3}$	3,272·10 ⁻³	-0,998	7
$pH = 7,01, B_{T} = 0,20 \text{ mol/l}$ $[KH_{2}PO_{4}] = 0,08; [Na_{2}HPO_{4}] = 0,12$	$-(2,74\pm0,20)\cdot10^{-1}$	$(4,57\pm0,34)\cdot10^{-3}$	8,352·10 ⁻³	-0,997	8
$pH = 7,48, B_T = 0,15 \text{ mol/l}$ $[KH_2PO_4] = 0,03; [Na_2HPO_4] = 0,12$	$-(2,98\pm0,34)\cdot10^{-1}$	$(4,97 \pm 0,57) \cdot 10^{-3}$	1,388.10-2	-0,994	8

Tabela 34. Parametry kinetyczne reakcji rozkładu MMD w buforze fosforanowym, w temperaturze $303 \text{ K}, \mu = 0.50 \text{ mol/l}$

Rycina 36. Półlogarytmiczne wykresy c, % = f(t) reakcji rozkładu MMD w buforze fosforanowym o pH 6,05, 6,43, 7,01, 7,48, w temperaturze 303 K, $\mu = 0,50$ mol/l.

Warunki reakcji	Parametry kinetyczne				
	$a \pm \Delta a \; [\min^{-1}]$	$k \pm \Delta k \ [s^{-1}]$	S_{a}	r	n
$pH = 6,02, B_T = 0,30 \text{ mol/l}$ $[KH_2PO_4] = 0,26; [Na_2HPO_4] = 0,04$	$-(4,23\pm0,28)\cdot10^{-2}$	$(7,05\pm0,46)\cdot10^{-4}$	1,138.10-3	-0,998	8
$\label{eq:pH} \begin{split} pH &= 6,\!40,B_{T} = 0,\!20 \ mol/l \\ [KH_{2}PO_{4}] &= 0,\!14;[Na_{2}HPO_{4}] = 0,\!06 \end{split}$	$-(6,88\pm0,76)\cdot10^{-2}$	$(1,15\pm0,13)\cdot10^{-3}$	3,200·10 ⁻³	-0,993	9
$pH = 6,98, B_T = 0,20 \text{ mol/l}$ $[KH_2PO_4] = 0,08; [Na_2HPO_4] = 0,12$	$-(1,20\pm0,08)\cdot10^{-1}$	$(1,99 \pm 0,14) \cdot 10^{-3}$	3,331·10 ⁻³	-0,998	8
$\label{eq:pH} \begin{split} pH &= 7,45, \ B_T = 0,15 \ mol/l \\ [KH_2PO_4] &= 0,03; \ [Na_2HPO_4] = 0,12 \end{split}$	$-(1,70\pm0,21)\cdot10^{-1}$	$(2,83 \pm 0,34) \cdot 10^{-3}$	7,999·10 ⁻³	-0,994	7

Tabela 35. Parametry kinetyczne reakcji rozkładu MMD w buforze fosforanowym, w temperaturze 298 K, $\mu = 0.50$ mol/l

Rycina 37. Półlogarytmiczne wykresy c, % = f(t) reakcji rozkładu MMD w buforze fosforanowym o pH 6,02, 6,40, 6,98, 7,45, w temperaturze 298 K, $\mu = 0,50$ mol/l.

Obserwowane stałe szybkości reakcji rozkładu MMD w buforze boranowym, pH 8,26 – 9,43

Tabela 36. Parametry kinetyczne reakcji rozkładu MMD w buforze boranowym, w temperaturze 313 K, $\mu = 0.50$ mol/l

Warunki reakcji	Parametry kinetyczne						
	$a \pm \Delta a \; [\min^{-1}]$	$k \pm \Delta k \ [s^{-1}]$	Sa	r	n		
	pH 8,26						
$B_{\rm T} = 0,1671 \ mol/l \label{eq:BT}$ [NaBO2] = 0,0781; [H3BO3] = 0,0889	$-(4,49\pm0,36)\cdot10^{-1}$	$(7,48\pm0,59)\cdot10^{-3}$	1,455.10-2	-0,9963	9		
pH 8,77							
$B_T = 0,1338 \text{ mol/l}$ [NaBO ₂] = 0,1137; [H ₃ BO ₃] = 0,0201	$-(4,76\pm0,54)\cdot10^{-1}$	$(7,93 \pm 0,89) \cdot 10^{-3}$	2,190.10-2	-0,9927	9		
$B_{T} = 0,1171 \text{ mol/l}$ $[NaBO_{2}] = 0,0995; [H_{3}BO_{3}] = 0,0176$	$-(4,68\pm0,47)\cdot10^{-1}$	$(7,80\pm0,78)\cdot10^{-3}$	1,977.10-2	-0,9938	9		
$B_{T} = 0,1002 \text{ mol/l}$ $[NaBO_{2}] = 0,0852; [H_{3}BO_{3}] = 0,0150$	$-(4,82\pm0,41)\cdot10^{-1}$	$(8,03\pm0,68)\cdot10^{-3}$	1,656.10-2	-0,9965	8		
$B_{T} = 0,0668 \text{ mol/l}$ $[NaBO_{2}] = 0,0568; [H_{3}BO_{3}] = 0,0100$	$-(4,67\pm0,34)\cdot10^{-1}$	$(7,79\pm0,57)\cdot10^{-3}$	1,399.10-2	-0,9973	8		

Rycina 38. Półlogarytmiczne wykresy c, % = f(t) reakcji rozkładu MMD w buforze boranowym o pH 8,77, w temperaturze 313 K, $\mu = 0,50$ mol/l.

Rycina 39. Półlogarytmiczne wykresy c, % = f(t) reakcji rozkładu MMD w buforze boranowym o pH 8,26, 8,77, w temperaturze 313 K, $\mu = 0,50$ mol/l.

Tabela 37. Parametry kinetyczne reakcji rozkładu MMD w buforze boranowym, w temperaturze $308 \text{ K}, \mu = 0.50 \text{ mol/l}$

Wammhi maakaii	Parametry kinetyczne					
w arunki reakcji	$a \pm \Delta a [\min^{-1}]$	$k \pm \Delta k [s^{-1}]$	S _a	r	n	
pH 8,31						
$B_T = 0,1671 \text{ mol/l}$ [NaBO ₂] = 0,0781; [H ₃ BO ₃] = 0,0889	$-(3,78\pm0,33)\cdot10^{-1}$	$(6,30\pm0,54)\cdot10^{-3}$	1,373·10 ⁻²	-0,9954	9	
pH 9,15						
$B_{T} = 0,1338 \text{ mol/l}$ [NaBO ₂] = 0,1137; [H ₃ BO ₃] = 0,0201	$-(3,74\pm0,31)\cdot10^{-1}$	$(6,23\pm0,51)\cdot10^{-3}$	1,257.10-2	-0,9966	8	

Rycina 40. Półlogarytmiczne wykresy c, % = f(t) reakcji rozkładu MMD w buforze boranowym o pH 8,31 i 9,15, w temperaturze 308 K, $\mu = 0,50$ mol/l.

303 K, $\mu = 0,50$ mo	1/1				
Warunki rookaji		Parametry kinetycz	ne		
warunki teakcji	$a \pm \Delta a [\min^{-1}]$	$k \pm \Delta k [s^{-1}]$	S_{a}	r	n

pH 8,46

pH 9,39

 $-(2,11\pm0,21)\cdot10^{-1}$

 $-(2,54\pm0,33)\cdot10^{-1}$

 $(3,51 \pm 0,35) \cdot 10^{-3}$

 $(4,23 \pm 0,54) \cdot 10^{-3}$

9,003.10-3

1,331.10-2

-0,9937

-0,9919

9

8

 $B_T=0,1671\ mol/l$

 $[NaBO_2] = 0,0781; [H_3BO_3] = 0,0889$

 $B_T = 0,1338 \text{ mol/l}$

 $[NaBO_2] = 0,1137; [H_3BO_3] = 0,0201$

Tabela 38.	Parametry kinetyczne reakcji rozkładu MMD w buforze boranowym, w temperaturze
	$303 \text{ K}, \mu = 0.50 \text{ mol/l}$

Rycina 41. Półlogarytmiczne wykresy c, % = f(t) reakcji rozkładu MMD w buforze boranowym o pH 8,46 i 9,39, w temperaturze 303 K, $\mu = 0,50$ mol/l.

	Parametry kinetyczne					
w arunki reakcji	$a \pm \Delta a \; [\min^{-1}]$	$k \pm \Delta k [s^{-1}]$	Sa	r	n	
pH 8,52						
$B_{T} = 0,1671 \ mol/l$ [NaBO ₂] = 0,0781; [H ₃ BO ₃] = 0,0889	$-(1,47\pm0,29)\cdot10^{-1}$	$(2,45\pm0,49)\cdot10^{-3}$	1,195.10-2	-0,9808	8	
pH 9,43						
$B_{\rm T} = 0,1338 \text{ mol/l}$ [NaBO ₂] = 0,1137; [H ₃ BO ₃] = 0,0201	$-(1,59\pm0,28)\cdot10^{-1}$	$(2,65 \pm 0,46) \cdot 10^{-3}$	1,162.10-2	-0,9818	9	

Tabela 39. Parametry kinetyczne reakcji rozkładu MMD w buforze boranowym, w temperaturze 298 K, $\mu = 0.50$ mol/l

Rycina 42. Półlogarytmiczne wykresy c, % = f(t) reakcji rozkładu MMD w buforze boranowym o pH 8,52 i 9,43, w temperaturze 298 K, $\mu = 0,50$ mol/l.

4.8. Ocena trwałości MMD w roztworach do podania parenteralnego

Do oceny trwałości MMD w wybranych roztworach do podania parenteralnego zastosowano metodę HPLC opisaną w rozdziale 4.6.

Zakres badań

- Wyznaczenie parametrów kinetycznych reakcji rozkładu MMD po rozpuszczeniu w wybranych roztworach do podania parenteralnego ($c_{MMD} = 0.5 \text{ mg/ml}$) w temperaturze pokojowej (22°C)
- Wyznaczenie parametrów kinetycznych reakcji rozkładu MMD po rozpuszczeniu w wybranych roztworach do podania parenteralnego (woda do iniekcji, 0,9% roztwór chlorku sodu, 5% roztwór glukozy), ($c_{MMD} = 0,5 \text{ mg/ml}$), przechowywanych w ampuł-kach z polietylenu w temperaturze pokojowej, chronionych i niechronionych od światła
- Wyznaczenie parametrów kinetycznych reakcji rozkładu MMD po rozpuszczeniu w wybranych roztworach do podania parenteralnego (woda do iniekcji, 0,9% roztwór chlorku sodu, 5% roztwór glukozy), ($c_{MMD} = 0,5 \text{ mg/ml}$), przechowywanych w strzy-kawkach z polipropylenu w temperaturze pokojowej, chronionych i niechronionych od światła
- Wyznaczenie parametrów kinetycznych reakcji rozkładu MMD w 0,9% roztworze chlorku sodu ($c_{MMD} = 0,2 \text{ mg/ml}, 0,3 \text{ mg/ml}, 0,5 \text{ mg/ml}, 1,5 \text{ mg/ml}$), w temperaturze pokojowej, chronionych i niechronionych od światła
- Ocena zawartości MMD po rozpuszczeniu w wybranych roztworach do podania parenteralnego ($c_{MMD} = 0.5 \text{ mg/ml}$) po 0 h, 6 h, 24 h przechowywania w temperaturze 2–8°C
- Ocena zawartości MMD po rozpuszczeniu w wybranych roztworach do podania parenteralnego ($c_{MMD} = 0.5 \text{ mg/ml}$) po 0 i 30 dniach przechowywania w temperaturze -16°C

Przygotowanie prób

5,0 mg MMD rozpuszczano w 10,0 ml rozpuszczalnika do podania parenteralnego. Roztwór wprowadzano do sterylnych, polietylenowych ampułek o pojemności 10 ml lub do 10 ml polipropylenowych strzykawek (w zależności od celu badania). Tak przygotowane próby przechowywano w podanych powyżej warunkach, z uwzględnieniem wpływu światła. W celu określenia wpływu stężenia MMD na trwałość, przygotowano roztwory MMD w 0,9% roztworze chlorku sodu o stężeniu odpowiednio: 0,2 mg/ml, 0,3 mg/ml, 0,5 mg/ml i 1,5 mg/ml.

W określonych odstępach czasu, odmierzano 0,5 ml odpowiednich roztworów i dodawano 1,0 ml roztworu chlorowodorku chininy o stężeniu 50 µg/ml. Na kolumnę chromatograficzną wprowadzano 50 µl przygotowanego roztworu.

Wyniki badania trwałości MMD w roztworach do podania parenteralnego w temperaturze pokojowej

• Woda do iniekcji

Tabela 40.	Parametry kinetyczne reakcji rozkładu MMD w wodzie do iniekcji ($c_{MMD} = 0.5 \text{ mg/ml}$),
	w temperaturze pokojowej

Czas [min]	P_i/P_w	c [%]	Parametry kinetyczne
0	2,561963	100	
81	2,196486	85,73	$(a \pm \Delta a) [min^{-1}] -(1.70 \pm 0.05) \cdot 10^{-3}$
162	1,917148	74,83	$S_a = 1,94 \cdot 10^3$
245	1,671277	65,36	$(k \pm \Lambda k) [s^{-1}]$ (2.83 ± 0.08) 10 ⁻⁵
324	1,489312	58,13	r -0,9996
403	1,296485	50,60	t _{0,1} 62 min
481	1,121567	43,78	n 8
560	0,974527	38,03	

 $c = (P_i/P_w)_t/(P_i/P_w)_0 \cdot 100$

• 0,9% Roztwór chlorku sodu

Tabela 41.Parametry kinetyczne reakcji rozkładu MMD w 0,9% roztworze chlorku sodu
($c_{MMD} = 0,5$ mg/ml), w temperaturze pokojowej

Czas [min]	P_i/P_w	c [%]	Parame	try kinetyczne
0	2,978043	100	1	2
39	2,658674	89,28	$(a \pm \Delta a) [\min^{-1}]$	$-(1,70\pm0,53)\cdot10^{-3}$
78	2,388469	80,20		$2,06 \cdot 10^{-2}$
127	2,105395	70,70	$(\mathbf{k} \pm \Delta \mathbf{k}) [\mathbf{s}^{-1}]$	$(2.83 \pm 0.88) \cdot 10^{-5}$
187	2,250504	75,57	r	-0,9649
244	1,879793	63,12	t _{0,1}	62 min
336	1,597200	53,63	n	7

• 5% Roztwór glukozy

Czas [min]	P_i/P_w	c [%]	Parametry kinetyczne
0	2,631378	100	
82	2,463868	93,63	$(a \pm \Delta a) [\min^{-1}] -(1,40 \pm 0,12) \cdot 10^{-3}$
166	2,217852	84,29	$S_a = 4,79\cdot10^{-5}$
245	1,901755	72,27	$(k \pm \Lambda k) [s^{-1}]$ (2.33 ± 0.19) 10 ⁻⁵
324	1,770434	67,28	r -0,9965
402	1,507946	57,30	t _{0,1} 75 min
482	1,380925	52,48	n 8
560	1,240289	47,13	

Tabela 42.Parametry kinetyczne reakcji rozkładu MMD w 5% roztworze glukozy
 $(c_{MMD} = 0.5 \text{ mg/ml})$, w temperaturze pokojowej

 $c = (P_i / P_w)_t / (P_i / P_w)_0 \cdot 100$

• 10% Roztwór glukozy

Tabela 43.Parametry kinetyczne reakcji rozkładu MMD w 10% roztworze glukozy
 $(c_{MMD} = 0.5 \text{ mg/ml})$, w temperaturze pokojowej

Czas [min]	P_i/P_w	c [%]	Parametry kinetyczne	
0	2,631378	100		
70	2,463868	94,55	$(a \pm \Delta a) [\min^{-1}] -(1.35 \pm 0.13) \cdot 10^{-5}$	
164	2,217852	84,31	$S_a = 5.2/10^2$	
244	1,901755	76,81	$(k \pm \Delta k) [s^{-1}]$ (2.25 ± 0.21) · 10 ⁻⁵	
310	1,770434	68,25	r -0,9955	
376	1,507946	62,88	t _{0,1} 78 min	
445	1,380925	57,30	n 8	
520	1,240289	49,53		

 $c = (P_i \! / \! P_w)_t \! / \! (P_i \! / \! P_w)_0 \! \cdot \! 100$

• 20% Roztwór glukozy

Czas [min]	P_i/P_w	c [%]	Parametry kinetyczne
0	2,812124	100	
81	2,656893	94,48	$(a \pm \Delta a) [\min^{-1}] -(4,27 \pm 0,92) \cdot 10^{-4}$
163	2,615733	93,02	$S_a = \frac{3,75 \cdot 10^3}{1.25 \cdot 10^{-2}}$
241	2,506139	89,19	$(k + \Lambda k) [s^{-1}]$ (7 13 + 1 53) $\cdot 10^{-6}$
322	2,323239	82,61	r -0,9777
400	2,347975	83,50	t _{0,1} 247 min
477	2,265830	80,57	n 8
557	2,221187	78,99	

Tabela 44.Parametry kinetyczne reakcji rozkładu MMD w 20% roztworze glukozy
 $(c_{MMD} = 0.5 \text{ mg/ml})$, w temperaturze pokojowej

 $c = (P_i/P_w)_t/(P_i/P_w)_0 \cdot 100$

• Roztwór Ringera

Tabela 45.	Parametry kinetyczne reakcji rozkładu MMD w roztworze Ringera ($c_{MMD} = 0.5 \text{ mg/ml}$),
	w temperaturze pokojowej

Czas [min]	P_i/P_w	c [%]	Parametry kinetyczne
0	2,465563	100	
81	2,276424	92,33	$(a \pm \Delta a) [\min^{-1}] -(1,58 \pm 0,09) \cdot 10^{-3}$
160	1,947095	78,97	$S_a = 3,49 \cdot 10^{-2}$
242	1,758267	71,31	$(k \pm \Lambda k) [s^{-1}]$ (2.64 ± 0.14)·10 ⁻⁵
322	1,537251	62,35	r -0,9985
401	1,325032	53,74	t _{0,1} 67 min
478	1,183947	48,02	n 8
557	1,04037	42,20	

• Mleczan Ringera

Czas [min]	P_i/P_w	c [%]	Parametry kinetyczne	
0	2,509692	100		
39	1,966448	78,35	$(a \pm \Delta a) [\min^{-1}] -(5,74 \pm 0,11) \cdot 10^{-3}$	
78	1,567372	62,45	$\begin{array}{cccc} S_{a} & 4,5/\cdot 10^{-5} \\ S & 7,42\cdot 10^{-2} \end{array}$	
118	1,275425	50,82	$(k \pm \Lambda k) [s^{-1}]$ (9.57 ± 0.19) · 10 ⁻⁵	
156	1,028968	41,00	r -0,9998	
194	0,823647	32,82	t _{0,1} 18 min	
233	0,648552	25,84	n 8	
272	0,519805	20,71		

Tabela 46.Parametry kinetyczne reakcji rozkładu MMD w mleczanie Ringera ($c_{MMD} = 0.5 \text{ mg/ml}$),
w temperaturze pokojowej

 $c = (P_i / P_w)_t / (P_i / P_w)_0 \cdot 100$

- Roztwór glukozy z 0,9% roztworem chlorku sodu (1:1)
- Tabela 47.Parametry kinetyczne reakcji rozkładu MMD w roztworze glukozy z 0,9% roztworem
chlorku sodu (1:1), ($c_{MMD} = 0,5 \text{ mg/ml}$), w temperaturze pokojowej

Czas [min]	P_i/P_w	c [%]	Parametry kinetyczne		
0	2,62228	100			
81	2,369725	90,37	$(a \pm \Delta a) [\min^{-1}] -(1,49 \pm 0,12) \cdot 10^{-3}$		
163	2,043482	77,93	$S_a = 4,89 \cdot 10^{-5}$		
242	1,951019	74,40	$(k \pm \Lambda k) [s^{-1}]$ (2.47 ± 0.20) $\cdot 10^{-5}$		
322	1,661177	63,35	r -0,9968		
400	1,485929	56,67	t _{0,1} 71 min		
477	1,312105	50,04	n 8		
555	1,140998	43,51			

 $c = (P_i\!/P_{\rm w})_t\!/(P_i\!/P_{\rm w})_0\!\cdot\!100$

• Roztwór glukozy z 0,9% roztworem chlorku sodu (2:1)

Tabela 48.	Parametry kinetyczne reakcji rozkładu MMD w roztworze glukozy z 0,9% roztworem
	chlorku sodu (2:1), ($c_{MMD} = 0.5 \text{ mg/ml}$), w temperaturze pokojowej

Czas [min]	P_i/P_w	c [%]	Parametry kinetyczne		
0	2,408227	100			
80	2,264198	94,02	$(a \pm \Delta a) [\min^{-1}] -(1.39 \pm 0.08) \cdot 10^{-3}$		
162	1,985142	82,43	$S_a = 3,42 \cdot 10^{-5}$		
241	1,779225	73,88	$(k \pm \Lambda k) [s^{-1}]$ (2.32 ± 0.14) 10 ⁻⁵		
322	1,611632	66,92	r -0,9982		
398	1,420685	58,99	t _{0,1} 76 min		
478	1,254934	52,11	n 8		
553	1,146539	47,61			

 $c = (P_i/P_w)_t/(P_i/P_w)_0 \cdot 100$

• Jonosteril

Tabela 49.Parametry kinetyczne reakcji rozkładu MMD w Jonosterilu ($c_{MMD} = 0.5 \text{ mg/ml}$),
w temperaturze pokojowej

Czas [min]	P_i/P_w	c [%]	Parametry kinetyczne		
0	2,491876	100	1	2	
82	1,959340	78,62	$(a \pm \Delta a) [\min^{-1}]$	$-(3,29\pm0,12)\cdot10^{-3}$	
245	1,131610	45,41	S _a	$4, /6 \cdot 10^{-2}$	
324	0,888398	35,65	$(k \pm \Delta k) [s^{-1}]$	$(5.49 \pm 0.20) \cdot 10^{-5}$	
401	0,668492	26,83	r	-0,9993	
481	0,500608	20,09	t _{0,1}	32 min	
560	0,417344	16,45	n	7	

• 20% Roztwór mannitolu

Czas [min]	P_i/P_w	c [%]	Parametry kinetyczne	
0	2,988685	100		2
83	2,234123	74,75	$(a \pm \Delta a) [\min^{-1}]$	$-(1,69\pm0,02)\cdot10^{-3}$
165	2,017187	67,49	S_a	$9,40\cdot10^{-2}$
245	1,751841	58,61	$\int S_b (k + \Lambda k) [s^{-1}]$	$(2.82 \pm 0.38) \cdot 10^{-5}$
323	1,584174	53,01	r	-0,9909
400	1,415386	47,36	t _{0,1}	62 min
481	1,239806	41,48	n	8
560	1,065854	35,66]	

Tabela 50.Parametry kinetyczne reakcji rozkładu MMD w roztworze 20% mannitolu
 $(c_{MMD} = 0.5 \text{ mg/ml})$, w temperaturze pokojowej

Wyniki badania trwałości MMD w roztworach do podania parenteralnego w ampułkach z polietylenu (PE), w temperaturze pokojowej

• Woda do iniekcji

Czas [min]	P_i/P_w	c [%]	Parametry kinetyczne			
Chronione przed światłem						
0	2,561963	100		<u>^</u>		
81	2,196486	85,73	$(a \pm \Delta a) [\min^{-1}]$	$-(1,70\pm0,05)\cdot10^{-3}$		
162	1,917148	74,83	Sa S	$1,94 \cdot 10^{-3}$		
245	1,671277	65,36	$(k + \Lambda k) [s^{-1}]$	$(2.83 \pm 0.08) \cdot 10^{-5}$		
324	1,489312	58,13	$(K \pm \Delta K)$ [S]	-0,9996		
403	1,296485	50,60	n	8		
481	1,121567	43,78	-			
560	0,974527	38,03				
	Niechron	ione przed śv	viatlem			
0	2,6810771	100		2		
72	2,3289113	86,86	$(a \pm \Delta a) [\min^{-1}]$	$-(2,08\pm0,14)\cdot10^{-3}$		
164	1,8484380	68,94	S _a	$5,80 \cdot 10^{-2}$		
233	1,5563736	58,05	$(\mathbf{k} \pm \Delta \mathbf{k}) [\mathbf{s}^{-1}]$	$(3.47 \pm 0.24) \cdot 10^{-5}$		
302	1,3945178	52,01	r	-0,9977		
377	1,2977419	46,17	n	8		
441	1,0840183	40,43				
520	0.8862206	33,05				

Tabela 51.Parametry kinetyczne reakcji rozkładu MMD w wodzie do iniekcji (c_{MMD} = 0,5 mg/ml),
w pojemniku z PE, w temperaturze pokojowej

Rycina 43. Półlogarytmiczny wykres zależności c, % = f(t) MMD w wodzie do iniekcji $(c_{MMD} = 0.5 \text{ mg/ml})$, w pojemnikach z PE, w temperaturze pokojowej, chronionych i niechronionych przed światłem.

• 0,9% Roztwór chlorku sodu

Tabela 52.	Parametry	kinetyczne	reakcji	rozkładu	MMD	W	0,9%	roztworze	chlorku	sodu
	$(c_{\rm MMD}=0,$	5 mg/ml), w	pojemni	ku z PE, w	tempera	atur	ze poko	ojowej		

Czas [min]	P_i/P_w	c [%]	Parametry kinetyczne			
Chronione przed światłem						
0	2,9780428	100		2		
39	2,6586735	89,28	$(a \pm \Delta a) [\min^{-1}]$	$-(1,70\pm0,53)\cdot10^{-3}$		
78	2,3884694	80,20	Sa S	$2,06 \cdot 10^{-2}$		
127	2,1053951	70,70	$ \begin{array}{c} \mathbf{S}_{\mathbf{b}} \\ (\mathbf{k} \pm \Delta \mathbf{k}) \ [\mathbf{s}^{-1}] \\ \mathbf{r} \end{array} $	$(2.83 \pm 0.88) \cdot 10^{-5}$		
187	2,2505040	75,57		-0,9649 7		
244	1,8797934	63,12	n			
336	1,5972001	53,63				
	Niechron	ione przed św	viatłem			
0	3,1133635	100		2		
39	2,7125158	87,12	$(a \pm \Delta a) [\min^{-1}]$	$-(2,27\pm0,25)\cdot10^{-3}$		
78	2,5541083	82,04	S _a	$9,75 \cdot 10^{-3}$		
118	2,2555047	72,44	$\left[(k \pm \Lambda k) \left[s^{-1} \right] \right]$	$(3.78 \pm 0.42) \cdot 10^{-5}$		
175	2,1266309	68,30	r	-0,9954		
240	1,7512998	56,25	n	7		
326	1,4499000	46,57				

Rycina 44. Półlogarytmiczny wykres zależności c, % = f(t) MMD w 0,9% roztworze chlorku sodu ($c_{MMD} = 0,5$ mg/ml), w pojemnikach z PE, w temperaturze pokojowej, chronionych i niechronionych przed światłem.

• 5% Roztwór glukozy

Czas [min]	P_i/P_w	c [%]	Parametry kinetyczne			
Chronione przed światłem						
0	2,6313784	100		2		
82	2,4638680	93,63	$(a \pm \Delta a) [\min^{-1}]$	$-(1,40\pm0,12)\cdot10^{-3}$		
166	2,2178524	84,29	$\begin{bmatrix} S_a \\ S \end{bmatrix}$	$4,79\cdot10^{-2}$		
245	1,9017550	72,27	S_b $(k + \Delta k) [s^{-1}]$	$(2.33 \pm 0.20) \cdot 10^{-5}$		
324	1,7704339	67,28	r	-0,9965		
402	1,5079458	57,30	n	8		
482	1,3809247	52,48]			
560	1,2402894	47,13]			
	Niechron	ione przed św	viatłem			
0	2,7594473	100		2		
70	2,5181015	91,26	$(a \pm \Delta a) [\min^{-1}]$	$-(1,64\pm0,02)\cdot10^{-3}$		
163	1,9922864	72,20	S_a	$8,25 \cdot 10^{-2}$		
243	1,8525074	67,13	$\int_{(k \pm \Lambda k)}^{\Lambda b} [s^{-1}]$	$(2.74 \pm 0.34) \cdot 10^{-5}$		
309	1,7489462	63,38	r	-0,9925		
376	1,5530850	56,28	n	8		
442	1,3306962	48,22				
520	1,1371399	41,21]			

Tabela 53. Parametry kinetyczne reakcji rozkładu MMD w 5% roztworze glukozy $(c_{MMD} = 0.5 \text{ mg/ml})$, w pojemniku z PE, w temperaturze pokojowej

Rycina 45. Półlogarytmiczny wykres zależności c, % = f(t) MMD w 5% roztworze glukozy ($c_{MMD} = 0.5$ mg/ml), w pojemnikach z PE, w temperaturze pokojowej, chronionych i niechronionych przed światłem.

Wyniki badań trwałości MMD w roztworach do podania parenteralnego przechowywanych w strzykawkach z polipropylenu (PP) w temperaturze pokojowej

• Woda do iniekcji

Czas [min]	P_i/P_w	c [%]	Parametry kinetyczne			
Chronione przed światłem						
0	2,8388941	100		2		
41	2,6934713	94,88	$(a \pm \Delta a) [\min^{-1}]$	$-(1,81\pm0,16)\cdot10^{-3}$		
84	2,5223655	88,85	S _a	$6,62 \cdot 10^{-3}$		
123	2,3965063	84,42	$(\mathbf{k} \pm \Delta \mathbf{k}) [\mathbf{s}^{-1}]$	$(3.01 \pm 0.27) \cdot 10^{-5}$		
163	2,1644412	76,24	r	-0,9960		
203	2,0175331	71,07	n	8		
242	1,8667625	65,76				
281	1,7231561	60,70				
	Niechron	ione przed św	viatłem			
0	2,7130187	100		2		
43	2,6776367	98,70	$(a \pm \Delta a) [\min^{-1}]$	$-(1,64\pm0,29)\cdot10^{-3}$		
86	2,4981088	92,08	Sa S	$1,19 \cdot 10^{-4}$		
127	2,3440080	86,40	$(k \pm \Lambda k) [s^{-1}]$	$(2.73 \pm 0.49) \cdot 10^{-5}$		
166	2,1680980	79,92	r	-0,9845		
207	2,1079973	77,70	n	8		
247	1,8445067	67,99]			
285	1,7272724	63,68				

Tabela 54.Parametry kinetyczne reakcji rozkładu MMD w wodzie do iniekcji (c_{MMD} = 0,5 mg/ml),
w strzykawkach z PP, w temperaturze pokojowej

Rycina 46. Półlogarytmiczny wykres zależności c, % = f(t) MMD w wodzie do iniekcji $(c_{MMD} = 0.5 \text{ mg/ml})$, w strzykawkach z PP, w temperaturze pokojowej, chronionych i niechronionych przed światłem.

• 0,9% Roztwór chlorku sodu

Tabela 55. Parametry kinetyczne reakcji rozkładu MMD w 0.9% roztworze chlorku sodu $(c_{MMD} = 0.5 \text{ mg/ml})$, w strzykawkach z PP, w temperaturze pokojowej

Czas [min]	P_i/P_w	c [%]	Parametry kinetyczne			
	Chroni	ione przed św	riatłem			
0	2,9599596	100		2		
79	2,6001761	87,84	$(a \pm \Delta a) [\min^{-1}]$	$-(1,69\pm0,11)\cdot10^{-3}$		
159	2,3179035	78,31	S _a	$4,56 \cdot 10^{-3}$		
239	2,0824010	70,35	$\left[\begin{array}{c} \mathbf{S}_{b} \\ (\mathbf{k} \pm \Delta \mathbf{k}) \\ \mathbf{s}^{-1} \end{array} \right]$	$(2.82 \pm 0.19) \cdot 10^{-5}$		
316	1,7352278	58,62	$(\mathbf{K} \perp \Delta \mathbf{K}) [\mathbf{S}]$	-0,9978		
397	1,5717025	53,10	n	8		
462	1,3739173	46,42				
540	1,1782649	39,81				
	Niechro	nione przed ś	wiatłem			
0	2,9205297	100		2		
80	2,5538340	87,44	$(a \pm \Delta a) [\min^{-1}]$	$-(1,75\pm0,20)\cdot10^{-3}$		
159	2,2005424	75,35	S _a	$8,15 \cdot 10^{-2}$		
239	1,8266323	62,54	$(\mathbf{k} \pm \Delta \mathbf{k}) [\mathbf{s}^{-1}]$	$(2.91 \pm 0.33) \cdot 10^{-5}$		
318	1,6950430	57,87	r	-0,9935		
397	1,5706492	53,78	n	8		
462	1,2498808	42,80				
540	1,1250500	38,52]			

Rycina 47. Półlogarytmiczny wykres zależności c, % = f(t) MMD w 0,9% roztworze chlorku sodu ($c_{MMD} = 0,5$ mg/ml), w strzykawkach z PP, w temperaturze pokojowej, chronionych i niechronionych przed światłem.

• 5% Roztwór glukozy

Tabela 56.Parametry kinetyczne reakcji rozkładu MMD w 5% roztworze glukozy
 $(c_{MMD} = 0.5 \text{ mg/ml})$, w strzykawkach z PP, w temperaturze pokojowej

Czas [min]	in] P _i /P _w		Parametry kinetyczne				
Chronione przed światłem							
0	3,0385476	100		2			
80	2,6946332	88,68	$(a \pm \Delta a) [\min^{-1}]$	$-(1,54\pm0,09)\cdot10^{-3}$			
158	2,3661417	77,87	S _a	$3,83 \cdot 10^{-2}$			
238	2,1345846	70,25	$\left[\begin{array}{c} \mathbf{S}_{b} \\ (\mathbf{k} \pm \Delta \mathbf{k}) \\ \mathbf{s}^{-1} \end{array} \right]$	$(2.57 \pm 0.16) \cdot 10^{-5}$			
317	1,8935049	62,32	r	-0,9882			
396	1,7097455	56,27	n	8			
461	1,5025673	49,45					
539	1,2907727	42,48					
Niechronione przed światłem							
0	3,0022304	100		2			
79	2,6357908	87,80	$(a \pm \Delta a) [\min^{-1}]$	$-(1,57\pm0,01)\cdot10^{-3}$			
158	2,3628048	78,70	Sa S	$4,87.10^{-2}$			
237	2,1377218	71,20	$(\mathbf{k} \pm \Delta \mathbf{k}) [\mathbf{s}^{-1}]$	$(2.62 \pm 0.20) \cdot 10^{-5}$			
316	1,8909055	62,98]r	-0,9971			
395	1,6720170	55,69	n	8			
460	1,4795361	49,28]				
540	1,2494977	41,62]				

Rycina 48. Półlogarytmiczny wykres zależności c, % = f(t) MMD w 5% roztworze glukozy ($c_{MMD} = 0.5$ mg/ml), w strzykawkach z PP, w temperaturze pokojowej, chronionych i niechronionych przed światłem.

Parametry kinetyczne reakcji rozkładu MMD (C_{MMD} = 0,2 mg/ml, 0,3 mg/ml, 0,5 mg/ml, 1,5 mg/ml) w 0,9% roztworze chlorku sodu, w temperaturze pokojowej

• Roztwór o stężeniu 0,2 mg/ml

Tabela 57.Parametry kinetyczne reakcji rozkładu MMD w 0,9% roztworze chlorku sodu
 $(c_{MMD} = 0,2 \text{ mg/ml})$, w pojemnikach z PE, w temperaturze pokojowej

Czas [min]	Czas [min] P _i /P _w		Parametry kinetyczne				
Chronione przed światłem							
0	1,1780956	100		$(1, 21, 1, 0, 22), 10^{-3}$			
42	1,0797839	91,66	$(a \pm \Delta a) [\min^{-1}]$	$-(1,31 \pm 0,22) \cdot 10^{-5}$ 8 74 \cdot 10^{-5}			
80	1,0478442	88,94	\mathbf{S}_{b}	$1,59 \cdot 10^{-3}$			
117	0,9891114	83,96	$(\mathbf{k} \pm \Delta \mathbf{k}) [\mathbf{s}^{-1}]$	$(2,20\pm0,37)\cdot10^{-5}$			
181	0,8872916	75,32	r n	-0,9892 7			
245	0,8087905	68,65					
344	0,7578314	64,32					
Niechronione przed światłem							
0	1,3763858	100		$(1, 20, \dots, 0, 00), 10^{-3}$			
43	1,2985635	94,35	$(a \pm \Delta a) [min^{-1}]$	$-(1,38 \pm 0,08) \cdot 10^{-5}$ 3 27 \cdot 10^{-5}			
86	1,2350089	89,73	\mathbf{S}_{b}	$6,03 \cdot 10^{-3}$			
124	1,1782670	85,61	$(\mathbf{k} \pm \Delta \mathbf{k}) [\mathbf{s}^{-1}]$	$(2,30 \pm 0,14) \cdot 10^{-5}$			
183	1,0853548	78,86	r n	-0,9986 7			
250	0,9907544	71,98					
342	0,8541925	62,06	1				

Rycina 49. Półlogarytmiczny wykres zależności c, % = f(t) MMD w 0,9% roztworze chlorku sodu ($c_{MMD} = 0,2$ mg/ml), w pojemnikach z PE, w temperaturze pokojowej, chronionych i niechronionych przed światłem.

• Roztwór o stężeniu 0,3 mg/ml

Tabela 58.	Parametry	kinetyczne	reakcji	rozkładu	MMD	W	0,9%	roztworze	chlorku	sodu
	$(c_{\rm MMD}=0,$	3 mg/ml), w	pojemni	kach z PE,	w temp	erat	urze po	okojowej		

Czas [min]	Czas [min] P _i /P _w		Parametry kinetyczne			
Chronione przed światłem						
0	1,7309315	100				
65	1,5715940	90,77	$(a \pm \Delta a) [\min^{-1}] -(1,49 \pm 0,11) \cdot 10^{-3}$			
108	1,4662089	84,71	$S_a = 4,29 \cdot 10^{-3}$			
149	1,3846574	80,00	$\begin{bmatrix} 3_b & 1,1110 \\ (k \pm \Lambda k) & [s^{-1}] & (2.48 \pm 0.18) \cdot 10^{-5} \end{bmatrix}$			
226	1,2107445	69,95	r -0,9975			
305	1,0580005	61,12	n 8			
381	0,9998332	57,76				
459	0,8743187	50,51				
Niechronione przed światłem						
0	1,8783839	100				
65	1,6065268	85,52	$(a \pm \Delta a) [\min^{-1}] -(1,61 \pm 0,15) \cdot 10^{-4}$			
110	1,4977071	79,73	$S_a = 5,96 \cdot 10^{-2}$			
150	1,4593579	77,69	$(k \pm \Lambda k) [s^{-1}]$ (2.68 ± 0.24) · 10 ⁻⁵			
209	1,3241288	70,49	r = -0.9959			
287	1,1354261	60,45	n 8			
364	1,0473627	55,76				
441	0,8887107	47,31				

Rycina 50. Półlogarytmiczny wykres zależności c, % = f(t) MMD w 0,9% roztworze chlorku sodu ($c_{MMD} = 0,3$ mg/ml), w pojemnikach z PE, w temperaturze pokojowej, chronionych i niechronionych przed światłem.

• Roztwór o stężeniu 0,5 mg/ml

Tabela 59.Parametry kinetyczne reakcji rozkładu MMD w 0,9% roztworze chlorku sodu
 $(c_{MMD} = 0,5 \text{ mg/ml})$, w pojemnikach z PE, w temperaturze pokojowej

Czas [min]	P_i/P_w	c [%]	Parametry kinetyczne				
Chronione przed światłem							
0	2,9780428	100	1	2			
39	2,6586735	89,28	$(a \pm \Delta a) [\min^{-1}]$	$-(1,70\pm0,53)\cdot10^{-3}$			
78	2,3884694	80,20	S _a	$2,06 \cdot 10^{-2}$			
127	2,1053951	70,70	$(\mathbf{k} \pm \Delta \mathbf{k}) [\mathbf{s}^{-1}]$	$(2.83 \pm 0.88) \cdot 10^{-5}$			
187	2,2505040	75,57	r	-0,9649			
244	1,8797934	63,12	n	7			
336	1,5972001	53,63					
Niechronione przed światłem							
0	3,1133635	100		2			
39	2,7125158	87,12	$(a \pm \Delta a) [\min^{-1}]$	$-(2,27\pm0,25)\cdot10^{-3}$			
78	2,5541083	82,04	Sa S	$9,75 \cdot 10^{-2}$			
118	2,2555047	72,44	$(\mathbf{k} \pm \Delta \mathbf{k}) [\mathbf{s}^{-1}]$	$(3.78 \pm 0.42) \cdot 10^{-5}$			
175	2,1266309	68,30	r	-0,9954			
240	1,7512998	56,25	n	7			
326	1,4499000	46,57					

$$c = (P_i/P_w)_t/(P_i/P_w)_0 \cdot 100$$

Rycina 51. Półlogarytmiczny wykres zależności c, % = f(t) MMD w 0,9% roztworze chlorku sodu ($c_{MMD} = 0,5$ mg/ml), w pojemnikach z PE, w temperaturze pokojowej, chronionych i niechronionych przed światłem.

• Roztwór o stężeniu 1,5 mg/ml

Tabela 60.Parametry kinetyczne reakcji rozkładu MMD w 0,9% roztworze chlorku sodu
 $(c_{MMD} = 1,5 \text{ mg/ml})$, w pojemnikach z PE, w temperaturze pokojowej

Czas [min]	Czas [min] P _i /P _w		Parametry kinetyczne				
Chronione przed światłem							
0	7,9369733	100	1	2			
42	7,3387644	92,46	$(a \pm \Delta a) [\min^{-1}]$	$-(1,54\pm0,13)\cdot10^{-3}$			
84	6,9084873	87,04	S_a	$5,06 \cdot 10^{-3}$			
137	6,4869414	81,73	$\left[(k \pm \Delta k) \left[s^{-1} \right] \right]$	$(2.56 \pm 0.22) \cdot 10^{-5}$			
205	5,9241670	74,64	r	-0,9973			
258	5,3234470	67,07	n	7			
338	4,6439090	58,51					
Niechronione przed światlem							
0	7,5766870	100	1	2			
45	6,8741431	90,73	$(a \pm \Delta a) [\min^{-1}]$	$-(1,53\pm0,21)\cdot10^{-3}$			
88	6,3811501	84,22	S_a	$8,25 \cdot 10^{-3}$			
134	5,9456067	78,47	$(\mathbf{k} \pm \Delta \mathbf{k}) [\mathbf{s}^{-1}]$	$(2.55 \pm 0.35) \cdot 10^{-5}$			
196	5,6996971	75,23]r	-0,9928			
254	4,9204835	64,94	n	7			
338	4,4671218	58,96					

 $c = (P_i \! / \! P_w)_t \! / \! (P_i \! / \! P_w)_0 \! \cdot \! 100$

Rycina 52. Półlogarytmiczny wykres zależności c, % = f(t) MMD w 0,9% roztworze chlorku sodu ($c_{MMD} = 1,5$ mg/ml), w pojemnikach z PE, w temperaturze pokojowej, chronionych i niechronionych przed światłem.

Ocena zawartości MMD po rozpuszczeniu w wybranych roztworach do podania parenteralnego (c_{MMD} = 0,5 mg/ml), w temperaturze 2–8°C

Tabela 61.	Zmiany stężenia MMD w wybranych roztworach do podania parenteralnego, w tempe-
	raturze $2-8^{\circ}$ C, po 0, 6 h i 24 h przechowywania

Dogmusgogalnik	c _{MMD} , %			
Közpüszczaniik	0 h	6 h	24 h	
Woda do iniekcji	100	84,11	62,57	
0,9% Roztwór chlorku sodu	100	81,98	66,23	
5% Roztwór glukozy	100	92,88	73,62	
10% Roztwór glukozy	100	95,13	80,08	
20% Roztwór glukozy	100	97,83	81,78	
Roztwór Ringera	100	79,95	64,09	
Mleczan Ringera	100	70,08	36,51	
Roztwór glukozy z 0,9% roztworem chlorku sodu (1:1)	100	89,18	72,80	
Roztwór glukozy z 0,9% roztworem chlorku sodu (2:1)	100	85,82	60,67	
Jonosteril	100	38,70	31,16	
Płyn fizjologiczny wieloelektrolitowy izotoniczny	100	75,36	44,91	
Płyn pediatryczny wyrównawczy	100	28,32	6,99	

Ocena zawartości MMD po rozpuszczeniu w wybranych roztworach do podania parenteralnego (c_{MMD} = 0,5 mg/ml), w temperaturze -16°C

Tabela 62.Zmiany stężenia MMD w wybranych roztworach do podania parenteralnego, w tempe-
raturze -16°C po 0 i 30 dniach przechowywania

Dogmusgogolnik	c _{MMD} , %		
Kozpuszczaniik	0	30 dni	
Woda do iniekcji	100	75,12	
0,9% Roztwór chlorku sodu	100	75,35	
5% Roztwór glukozy	100	75,92	
10% Roztwór glukozy	100	100	
20% Roztwór glukozy	100	90,17	
Roztwór Ringera	100	82,09	
Mleczan Ringera	100	64,81	
Roztwór glukozy z 0,9% roztworem chlorku sodu (1:1)	100	85,00	
Roztwór glukozy z 0,9% roztworem chlorku sodu (2:1)	100	89,34	
Jonosteril	100	81,51	
Płyn fizjologiczny wieloelektrolitowy izotoniczny	100	43,06	
Płyn pediatryczny wyrównawczy	100	52,51	

4.9. Ocena trwałości MMD w fazie stałej

Do oceny trwałości MMD w fazie stałej zastosowano metodę HPLC opisaną w rozdziale 4.6.

Badania trwałości w fazie stałej obejmowały wyznaczenie obserwowanych stałych szybkości reakcji rozkładu MMD:

- w temperaturze 373 K, przy wilgotności względnej powietrza 0%
- w atmosferze powietrza o wilgotności względnej ~76,4% w temperaturze 323 K, 333 K, 343K i 353K
- w temperaturze 353K, przy wilgotności względnej powietrza 60,5%, 66,5%, 76,4% i 90,0%

Sposób przeprowadzenia badań

Do fiolek szklanych o pojemności 5 ml, odważono dokładnie 5,0 mg badanej substancji. W zależności od przeznaczenia prób postępowano jak podano poniżej.

- Próby przeznaczone do badania trwałości w atmosferze suchego powietrza, wstawiono do łaźni piaskowej, która znajdowała się 24 godziny w komorze cieplnej o temperaturze 373 K
- Próby przeznaczone do badania wpływu temperatury w atmosferze powietrza o wilgotności względnej ~76,4%, wstawiono do eksykatorów zawierających nasycone roztwory chlorku sodu. Tak przygotowane eksykatory umieszczone były 24 h przed wstawieniem prób w komorach cieplnych o temperaturze 323 K, 333 K, 343 K i 353 K
- Próby przeznaczone do badania wpływu wilgotności względnej powietrza wstawiono do eksykatorów zawierających nasycone roztwory soli nieorganicznych, które utrzymywały następującą wilgotność względną: ~60,5% (nasycony roztwór jodku potasu), ~66,5% (nasycony roztwór azotanu sodu), ~76,4% (nasycony roztwór chlorku sodu) i ~90,0% (nasycony roztwór siarczanu cynku). Tak przygotowane eksykatory umiesz-czono przed wstawieniem prób w komorze cieplnej o temperaturze 353 K

W określonych odstępach czasu próby wyjmowano, ochładzano do temperatury pokojowej i rozpuszczano w mieszaninie acetonitryl : woda (1:1).

Tak przygotowane roztwory przenoszono do kolb miarowych o pojemności 10 ml, uzupełniano do 10,0 ml mieszaniną acetonitryl : woda (1:1) i mieszano. Pobierano 1,0 ml roztworu badanego, dodawano 1,0 ml wzorca wewnętrznego i mieszano. Na kolumnę chromatograficzną wprowadzano 25 µl przygotowanego roztworu.

Kinetyczny mechanizm rozkładu MMD w fazie stałej

W podwyższonej temperaturze, przy wilgotności względnej powietrza 0%, rozkład MMD zachodził zgodnie z kinetyką reakcji pierwszego rzędu względem stężenia substratu. Prostoliniowy półlogarytmiczny wykres c = f(t) (Rycina 53) posłużył do wyznaczenia obserwowanej stałej szybkości rozkładu oraz parametrów kinetycznych reakcji rozkładu.

Rozkład MMD w podwyższonej temperaturze i wilgotności względnej powietrza zachodzi zgodnie z modelem reakcji autokatalitycznej pierwszego rzędu względem stężenia substratu (Rycina 54, 56), który jest opisany podanym poniżej równaniem:

$$\ln c_t / (c_0 - c_t) = k_{obs} \cdot t + C$$

gdzie :

 $c_t/(c_0 - c_t) = P_t/(P_0 - P_t)$

 c_0 – stężenie substratu w czasie t_0

c_t- stężenie substratu w czasie t

 $(c_0 - c_t)$ – charakteryzuje stężenie produktu w czasie t

C – stała związana z okresem indukcji

Okres półtrwania i czas rozkładu 10% związku obliczono korzystając z następujących wzorów: $t_{0,5} = b/k$; $t_{0,1} = (b - 2,197)/k$.

Celem wyznaczenia obserwowanych stałych szybkości reakcji rozkładu MMD w warunkach podwyższonej wilgotności względnej powietrza oraz parametrów kinetycznych reakcji, wykonano wykresy zależności $c_t/(c_0 - c_t) = f(t)$ (Rycina 55, 57), które są prostoliniowe, a ich nachylenie jest równe obserwowanej stałej szybkości reakcji ze znakiem ujemnym -a = k_{obs} .

Wyniki rozkładu MMD w fazie stałej w temperaturze 373K, przy wilgotności względnej powietrza 0%

W tabeli 63 przedstawiono zmiany stężenia MMD poddanej rozkładowi w temperaturze 373 K, RH = 0% oraz parametry kinetyczne reakcji rozkładu.

Czas [h]	P_i/P_w	c[%]	Parametry kinetyczne
0	1,2136	100	
72	0,9985	82,3	$\begin{bmatrix} (a \pm \Delta a) [h^{-}] & -(1,64 \pm 0,14) \cdot 10^{-5} \\ S. & 5.98 \cdot 10^{-5} \end{bmatrix}$
122	0,9683	79,8	$b \pm \Delta b \qquad \qquad 4,59 \pm 0,06$
168	0,9106	75,0	$\begin{array}{c} S_{b} & 2,33 \cdot 10^{-2} \\ (1 - 1 - 1) & (4.55 + 0.20) - 10^{-7} \end{array}$
240	0,8392	69,1	$(K \pm \Delta K)$ [s] $(4,55 \pm 0,39) \cdot 10^{-1}$ r -0.9954
287,5	0,8118	66,9	$S_y = 4,45 \cdot 10^{-2}$
408	0,6302	51,9	$t_{0,5}$ 423 h t 64 h 21 min
623	0,4192	34,5	n = 9
793	0,3251	26,8	

Tabela 63. Zmiany stężenia MMD w temperaturze 373 K, RH = 0%

 $c = (P_i/P_w)_t/(P_i/P_w)_0 \cdot 100$

Rycina 53. Półlogarytmiczny wykres zależności c, % = f(t) reakcji rozkładu MMD, w temperaturze 373 K, RH = 0%.

Półlogarytmiczny wykres zależności c, % = f(t) jest prostoliniowy (Rycina 53), a jego nachylenie jest równe obserwowanej stałej szybkości reakcji ze znakiem ujemnym $-k_{obs}$, c = $(P_i/P_w)_t/(P_0/P_w)_0 \cdot 100$.

Okres półtrwania i czas rozkładu 10% związku obliczono korzystając z następujących wzorów: $t_{0,5} = 0,693/k$; $t_{0,1} = 0,1054/k$
Parametry kinetyczne reakcji rozkładu MMD w temperaturze 323 K, 333 K, 343 K i 353 K, RH ~76,4%

Zmiany stężenia MMD oraz parametry kinetyczne reakcji rozkładu przy RH ~76,4% przedstawiono w tabeli 64 oraz na rycinach 54–55.

$\begin{array}{ll} (a \pm \Delta a) \ [h^{-1}] & -(3,72 \pm 0,81) \cdot 10^{-2} \\ S_a & 2,92 \cdot 10^{-3} \\ b \pm \Delta b & 1,61 \pm 0,33 \\ S_b & 1,18 \cdot 10^{-1} \\ (k \pm \Delta k) \ [s^{-1}] & (1,03 \pm 0,23) \cdot 10^{-5} \end{array}$
$S_{a} = 2,92 \cdot 10^{-5}$ $b \pm \Delta b = 1,61 \pm 0,33$ $S_{b} = 1,18 \cdot 10^{-1}$ $(k \pm \Delta k) [s^{-1}] = (1,03 \pm 0,23) \cdot 10^{-5}$
$ \begin{array}{c} 1,01 \pm 0,53 \\ S_{b} \\ (k \pm \Delta k) [s^{-1}] \\ \end{array} $ $ \begin{array}{c} 1,01 \pm 0,53 \\ 1,18 \cdot 10^{-1} \\ (1,03 \pm 0,23) \cdot 10^{-5} \end{array} $
$(k \pm \Delta k) [s^{-1}]$ $(1,03 \pm 0,23) \cdot 10^{-5}$
r -0,9879 S _v $1.47 \cdot 10^{-2}$
43 h 17 min
$f_{0,1}$ 15 h 47 min n 6
$(a \pm \Delta a) [h^{-1}]$ -(8.53 ± 0.89) · 10 ⁻²
$S_a = 3,49 \cdot 10^{-3}$
$b \pm \Delta b$ 2,78 ± 0,35 S _b 1,36 · 10 ⁻¹
$(k \pm \Delta k) [s^{-1}]$ (2,37 ± 0,25) · 10 ⁻⁵
r -0,9958 S 1 38 \cdot 10 ⁻¹
$t_{0,5}$ 32 h 39 min
$t_{0,1}$ 6 h 53 min n 7
$(a \pm \Delta a) [h^{-1}]$ -(3,63 ± 0,81) · 10 ⁻¹
$S_a = 1,12 \cdot 10^{-2}$
$b \pm \Delta b$ 3,89 ± 0,27 S _b 1 16 · 10 ⁻¹
$(k \pm \Delta k) [s^{-1}]$ (1,01 ± 0,07) · 10 ⁻⁴
r -0.9967
$t_{0.5}$ 10 h 43 min
4 h 40 min
n 9
$t_0 n = (aSbS(l_rSt_0 n) = (aSbS(l_rSt_0 n))$

Tabela 64. Zmiany stężenia MMD w temperaturze 323 K, 333 K, 343 K i 353 K, RH ~76,4%

	0	4,6669	100	-	$(a \pm \Delta a) [h^{-1}]$	$-1,14 \pm 0,31$
	1	3,2461	69,6	2,2848	$\begin{bmatrix} \mathbf{S}_{a} \\ \mathbf{b} + \mathbf{A}\mathbf{b} \end{bmatrix}$	$1,22 \cdot 10^{-1}$ 2 32 + 0 70
25212	1,5	3,0416	65,2	1,8715	S_{b}	$3,23 \cdot 10^{-1}$
353K	2	2,5499	54,6	1,2046	$(\mathbf{k} \pm \Delta \mathbf{k}) [\mathbf{s}^{-1}]$	$(3,16\pm0,87)\cdot10^{-4}$
	2,5	2,1451	45,9	0,8506	r S.	-0.9725 3.23 · 10 ⁻¹
	3	1,4919	31,9	0,4699	t _{0,5}	2 h 2 min
	3,5	0,5942	12,7	0,1459	t _{0,1}	7 min 7
	4	0,3529	7,8	0,0843	1"	,

 $c = (P_i / P_w)_t / (P_i / P_w)_0 \cdot 100$

Rycina 54. Półlogarytmiczny wykres zależności c, % = f(t) reakcji rozkładu MMD, w temperaturze 323 K, 333 K, 343 K, 353 K, RH ~76,4%.

Rycina 55. Półlogarytmiczny wykres zależności $c_t/(c_0-c_t) = f(t)$ reakcji rozkładu MMD, w temperaturze 323 K, 333 K, 343 K, 353 K, RH ~76,4%.

Parametry kinetyczne reakcji rozkładu MMD przy RH ~60,5%, ~66,5%, ~76,4%, ~90,0% w temperaturze 353 K

Zmiany stężenia MMD oraz parametry kinetyczne reakcji rozkładu w temperaturze 353 K, przedstawiono w tabeli 65 oraz na rycinach 56–57.

RH [%]	Czas [h]	P_i/P_w	c[%]	$c_t / (c_0 - c_t)$	Parametr	ry kinetyczne
	0	1,2136	100	-	1	1
	2	1,1111	91,6	10,9048	$(a \pm \Delta a) [h^{-1}]$	$-(1,61\pm0,12)\cdot10^{-1}$
	4,25	1,0693	88,1	7,4034	$S_a = h \pm \Lambda h$	$4,74 \cdot 10$ 2,67 ± 0,12 5,78 · 10 ⁻²
60,5	6,5	0,9879	81,4	4,3763	S _b	
	9	0,9601	79,1	3,7847	$(\mathbf{k} \pm \Delta \mathbf{k}) [\mathbf{s}^{-1}]$	$(4,47\pm0,32)\cdot10^{-5}$
	12	0,8105	66,8	2,0120	r S.	-0,9974 7 94 · 10 ⁻²
	14,5	0,7160	58,9	1,4331	t _{0,5}	16 h 36 min
	17	0,5874	48,4	0,9380	t _{0,1}	2 h 56 min 8
	20	0,4454	36,7	0,5791	- 11	0
	0	1,2136	100	-	-	
	1,5	1,1459	94,4	16,8571	$(a \pm \Delta a)$ [h ⁻¹]	$-(2.58 \pm 0.22) \cdot 10^{-1}$
	3	1,1179	92,1	11,6582	Sa	$9,53 \cdot 10^{-3}$
00,5	4,5	1,0196	84,0	5,2500	$b \pm \Delta b$	$3,04 \pm 0,21$
-	6	0,9373	77,2	3,3860	$S_{b} = (k \pm \Delta k) [s^{-1}]$	$9,83 \cdot 10^{-5}$ (7,15 ± 0,59) · 10 ⁻⁵ -0,9939
	7,5	0,9073	74,8	2,9683		
	9	0,8062	66,4	1,9762	Sy	$1,55 \cdot 10^{-1}$
	10,5	0,7470	61,6	1,6042	t _{0,5}	11 h 49 min
	11,75	0,6429	52,9	1,1231	t _{0,1}	3 h 17 min
	13	0,5158	42,5	0,7395	n	11
	15	0,3714	30,6	0,4420		
	18	0,2051	16,9	0,2043		
	0	4,6669	100	-	$(a \pm \Delta a) [h^{-1}]$	$-1,14 \pm 0,31$
	1	3,2461	69,6	2,2848	$S_a = b + \Lambda b$	$1,22 \cdot 10$ 2 32 + 0 70
	1,5	3,0416	65,2	1,8715	S_{b}	$3,28 \cdot 10^{-1}$
76,4	2	2,5499	54,6	1,2046	$(\mathbf{k} \pm \Delta \mathbf{k}) [\mathbf{s}^{-1}]$	$(3,16\pm0,87)\cdot10^{-4}$
	2,5	2,1451	45,9	0,8506	r	-0,9725
	3	1,4919	31,9	0,4699	S_y	5,25 · 10 2 h 2 min
	3,5	0,5942	12,7	0,1459	$t_{0,1}$	7 min
	4	0,3529	7,8	0,0843	n	7

Tabela 65. Zmiany stężenia MMD, w temperaturze 353 K, RH ~60,5% - ~90,0%

	0	1,3991	100	-	$(a \pm \Delta a) [h^{-1}]$	$-(3,82\pm0,88)\div10^{-2}$
	0,25	1,1130	79,6	3,9020	S_a	$2,75 \cdot 10^{-5}$
	0,75	0,9172	65,6	1,9070	$b \pm \Delta b$ S _b	2.03 ± 0.00 $2.07 \cdot 10^{-1}$
90,0	1	0,5504	39,3	0,6474	$(\mathbf{k} \pm \Delta \mathbf{k}) [\mathbf{s}^{-1}]$	$(6,37 \pm 1,46) \cdot 10^{-4}$
	1,5	0,2769	19,8	0,2469	r	-0,9923
	2	0,1028	7,3	0,0787	to 5	2,20 · 10 · 54 min
					$t_{0,1}$	4 min
					n	5

Rycina 56. Półlogarytmiczny wykres zależności c, % = f(t) reakcji rozkładu MMD, w temperaturze 353 K i RH ~60,5% – ~90,0%.

Rycina 57. Półlogarytmiczny wykres zależności $c_t/(c_0-c_t) = f(t)$ reakcji rozkładu, w temperaturze 353 K i RH ~60,5% – ~90,0%.

4.10. Ocena fototrwałości MMD w roztworach wodnych

Ocenę fototrwałości MMD przeprowadzono zgodnie z wymaganiami podanymi w Przewodniku ICH Q1B. Przeprowadzone badanie pozwala zaklasyfikować związek do grupy związków fotolabilnych lub fotostabilnych, w zależności od otrzymanych wyników.

Badanie przeprowadzono w komorze do naświetleń, w której zastosowano źródło promieniowania o zakresie 320–800 nm oraz użyto aktynometru chemicznego – 2% wodnego roztworu chlorowodorku chininy.

Stopień rozkładu badanej substancji określano metodą spektrofotometryczną, mierząc różnicę absorbancji przy $\lambda = 480$ nm. Dla aktynometru chemicznego umieszczonego obok próby badanej i naświetlanego równolegle, długość fali, przy której mierzono różnicę absorbancji wynosiła 400 nm.

Wyniki naświetlania aktynometru chemicznego

Przygotowanie 2% wodnego roztworu chininy (aktynometr chemiczny)

Do kolby miarowej o pojemności 50 ml, odważono 0,510 g dwuwodnego monochlorowodorku chininy, uzupełniono wodą do 50,0 ml, ogrzewając w temperaturze 30°C.

W określonych punktach czasowych wykreślano widmo UV i mierzono absorbancję przy długości fali $\lambda = 400$ nm. Zmiany widma roztworu chininy przedstawiono na rycinie 58.

Rycina 58. Zmiany widma absorpcji podczas naświetlania aktynometru chemicznego.

Zmiany absorbancji roztworu chlorowodorku chininy mierzone przy długości fali $\lambda = 400$ nm przedstawiono w tabeli 66.

Absorbancja przed naświetlaniem A ₀	Czas naświetlania t [min]	Absorbancja po czasie naświetlania t A _t	Różnica absorbancji $\Delta A = A_t - A_0$
0,0894	35	0,1234	0,034
	65	0,1380	0,0486
	95	0,1556	0,0662
	130	0,1739	0,0845
	160	0,2091	0,1197
	190	0,2283	0,1389
	220	0,2332	0,1438

Tabela 66. Zmiany absorbancji roztworu chlorowodorku chininy przy 400 nm podczas naświetlania

Wyniki naświetlania roztworów MMD

Przygotowanie roztworu MMD

Przygotowano roztwór MMD o stężeniu 2,5 \cdot 10⁻² mg/ml.

W określonych punktach czasowych wykreślano widmo UV i mierzono absorbancję przy długości fali $\lambda = 480$ nm. Zmiany widma roztworu badanej pochodnej przedstawiono na rycinie 59.

Rycina 59. Zmiany widma absorpcji podczas naświetlania wodnego roztworu MMD.

Zmiany absorbancji roztworu MMD, mierzone przy długości fali $\lambda = 480$ nm przedstawiono w tabeli 67.

Absorbancja przed naświetlaniem A ₀	Czas naświetlania t [min]	Absorbancja po czasie naświetlania t A _t	Różnica absorbancji $\Delta A = A_t - A_0$
0,3889	10	0,3579	0,0310
	30	0,3066	0,0823
	50	0,2580	0,1309
	75	0,2092	0,1797
	95	0,1809	0,2080
	135	0,1384	0,2505
	165	0,1163	0,2726

Tabela 67. Zmiany absorbancji roztworu MMD przy 480 nm podczas naświetlania

W badaniach trwałości MMD w roztworach wodnych wykorzystano roztwory o stężeniu 25,0 µg/ml. Naświetlanie przeprowadzono przy użyciu wysokociśnieniowej lampy UV z palnikiem rtęciowym HBO-50, emitującej promieniowanie w zakresie od 300 do 800 nm. Do uzyskania odpowiednich warunków naświetlania użyto filtrów Pyrex o maksymalnej przepuszczalności światła przy długości fali $\lambda_{maks} = 365$ nm oraz $\lambda_{maks} = 510$ nm. Do badania wykorzystano kwarcowe kuwety z teflonowym korkiem o poj. 2,5 ml i długości drogi optycznej l = 10 mm. Maksimum absorpcji promieniowania przy 365 i 510 nm uzyskano stosując filtr Wood'a. Natężenia promieniowania padającego na badany układ zmierzono przy pomocy Radiometru typu VLX-3W firmy Vilber Lourmat i wynosiło ono 86,0 – 89,0 mW/cm². W czasie 1 minuty rejestrowano energię 5,10 – 5,30 J/cm².

Analizie poddano zmiany absorbancji mierzonej przy długości fali $\lambda = 480$ nm oraz zmiany widma absorpcyjnego w zależności od czasu ekspozycji na promieniowanie.

Rycina 60. Zmiany widma absorpcyjnego MMD w roztworze wodnym w czasie ekspozycji na promieniowanie: A) o $\lambda = 365$ nm B) o $\lambda = 510$ nm.

Rycina 61. Półlogarytmiczne wykresy c, % = f(t) reakcji rozkładu MMD pod wpływem promieniowania

 Δ filtr $\lambda = 510$ nm • filtr $\lambda = 365$ nm

Filtr	$\lambda = 365 \text{ nm}$	$\lambda = 510 \text{ nm}$					
Parametry kinetyczne							
k [s ⁻¹]	$(1,57\pm0,04)\cdot10^{-4}$	$(8,83\pm0,29)\cdot10^{-4}$					
$a [\min^{-1}]$	$(-2,50\pm0,09)\cdot10^{-3}$	$(-5,03\pm0,17)\cdot10^{-2}$					
S _a	$4,25 \cdot 10^{-5}$	8,13 · 10 ⁻⁴					
r	-0,9984	-0,9982					
n	15	17					
Wydajność kwantowa							
$I [J \cdot cm^{-2} \cdot s^{-1}]$	0,0872	0,0872					
<i>E</i> [J]	5,44 · 10 ⁻¹⁹	3,89 · 10 ⁻¹⁹					
I_0 [kwantów·s ⁻¹]	$4,01 \cdot 10^{17}$	$5,67 \cdot 10^{17}$					

Tabela 68. Parametry kinetyczne i wydajność kwantowa fotodegradacji MMD

Wydajność kwantową definiuje się jako stosunek liczby cząsteczek ulegających fotodegradacji do liczby fotonów absorbowanych przez daną objętość w określonym przedziale czasowym. Do jej wyznaczenia konieczne są następujące parametry:

- I natężenie promieniowania zmierzone przy pomocy radiometru zaopatrzonego w sensor 365 nm i 510 nm. Wyznaczona wartość wynosiła 5,2340 J·cm⁻² ·min⁻¹ = 0,0872 J·cm⁻² ·s⁻¹.
- E energia pojedynczego kwantu promieniowania dla długości fali $\lambda = 365$ nm i $\lambda = 510$ nm.

$$E = h \cdot \frac{c}{\lambda}$$

h – stała Plancka 6,626 \cdot 10⁻³⁴ J \cdot s, c – prędkość światła c = 2,992 \cdot 10⁸ m \cdot s⁻¹, λ – długość fali [m]

dla λ = 365 nm 1 J = 1,838 \cdot 10^{18} kwantów, energii 0,0872 J odpowiada 1,604 \cdot 10^{17} kwantów

dla $\lambda = 510$ nm 1 J = 2,57 \cdot 10^{18} kwantów, energii 0,0872 J odpowiada 2,241 \cdot 10^{17} kwantów

• I_0 – ilość kwantów padająca na kuwetę o powierzchni P = 2,5 cm²

dla $\lambda = 365$ nm wydajność kwantowa promieniowania wyniosła 4,011 $\cdot 10^{17}$ kwantów s⁻¹

dla $\lambda = 510$ nm wydajność kwantowa promieniowania wyniosła 5,672 $\cdot 10^{17}$ kwantów s⁻¹

Na podstawie wartości I_o obliczono ilość kwantów absorbowanych przez próbkę korzystając z wzoru:

$$I_{abs} = I_0 (1 - 10^{-A})$$

 I_{abs} = liczba kwantów promieniowania emitowanego przez lampę A = absorbancja

Wydajność kwantową fotodegradacji dla danego procentu konwersji MMD obliczono korzystając z zależności:

$$\Phi = \Delta \mathbf{c} \cdot \mathbf{N}_{\mathrm{A}} / \mathbf{I}_{\mathrm{abs}} \cdot \mathbf{t}$$

Do obliczeń wartości wydajności kwantowych MMD wykorzystano program udostępniony przez Zakład Fotochemii Wydziału Chemii UAM. Wartości pozornych wydajności kwantowych dla poszczególnych czasów naświetlania ekstrapolowano do początkowego stężenia roztworu MMD, otrzymując wartości rzeczywistych wydajności kwantowych.

Molowe współczynniki absorpcji MMD wyznaczono z wzoru:

$$\varepsilon = A/c \cdot L$$

 ϵ = molowy współczynnik absorpcji [l · mol⁻¹ · cm⁻¹]

A = absorbancja

- c = stężenie badanego roztworu [mol/l]
- L = długość drogi optycznej (1 cm)

Obliczone średnie wartości molowych współczynników absorpcji MMD przedstawiono w tabeli 69.

Promieniowanie wzbudzające	Molowe współczynniki absorpcji [l · mol ⁻¹ ·cm ⁻¹]
£365	$3,38 \cdot 10^{3}$
£510	$9,39 \cdot 10^3$
E ₄₈₀	$1,06 \cdot 10^4$

Tabela 69.Średnie wartości molowych współczynników absorpcji MMD.

Obliczone wydajności kwantowe dla procesu konwersji MMD dla odpowiednich długości fali zostały przedstawione w tabeli 70 i 71.

Tabela 70. Wydajność kwantowa dla procentu konwersji MMD (filtr λ = 365 nm)

Lp.	t [min]	А	Wydajność kwantowa Φ	% konwersji
		$\lambda = 365 \text{ nm}$		
1	0	0,6516	0	0
2	5	0,6362	$5,36 \cdot 10^{-5}$	2,36
3	15	0,6146	$4,30 \cdot 10^{-5}$	5,68
4	25	0,5853	$4,61 \cdot 10^{-5}$	10,17
5	35	0,5625	$4,43 \cdot 10^{-5}$	13,67
6	45	0,5371	$4,42 \cdot 10^{-5}$	17,57
7	60	0,5013	$4,36 \cdot 10^{-5}$	23,07
8	70	0,4901	$4,01 \cdot 10^{-5}$	24,79
9	85	0,4599	$3,92 \cdot 10^{-5}$	29,42
10	95	0,4428	$3,82 \cdot 10^{-5}$	32,04
11	110	0,4148	$3,74 \cdot 10^{-5}$	36,34
12	125	0,3996	$3,51 \cdot 10^{-5}$	38,67
13	140	0,3840	$3,32 \cdot 10^{-5}$	41,07
14	155	0,3708	$3,15 \cdot 10^{-5}$	43,09
15	170	0,3557	$3,03 \cdot 10^{-5}$	45,41
16	185	0,3443	$2,89 \cdot 10^{-5}$	47,16
17	215	0,3357	$2,56 \cdot 10^{-5}$	48,48
18	245	0,3101	$2,42 \cdot 10^{-5}$	52,41
19	305	0,2796	$2,02 \cdot 10^{-5}$	55,17
20	335	0,2597	$1,93 \cdot 10^{-5}$	57,09

Lp.	t [min]	А	Wydajność kwantowa Φ	% konwersji
	·	$\lambda = 510 \text{ nm}$		
1	0	0,4428	0	0
2	1	0,4157	$2,13 \cdot 10^{-4}$	6,12
3	2	0,4041	$1,52 \cdot 10^{-4}$	8,74
4	3,5	0,3818	$1,37 \cdot 10^{-4}$	13,78
5	5	0,3471	$1,50 \cdot 10^{-4}$	21,61
6	6	0,3342	$1,42 \cdot 10^{-4}$	24,53
7	7,5	0,3050	$1,44 \cdot 10^{-4}$	31,12
8	9	0,2878	$1,35 \cdot 10^{-4}$	35,00
9	10,5	0,2646	$1,33 \cdot 10^{-4}$	40,24
10	12,5	0,2375	$1,29 \cdot 10^{-4}$	46,36
11	15	0,2048	$1,24 \cdot 10^{-4}$	53,75
12	17	0,1744	$1,14 \cdot 10^{-4}$	60,61
13	19	0,1672	$1,14 \cdot 10^{-4}$	62,24
14	21	0,1437	$1,12 \cdot 10^{-4}$	67,55
15	24	0,1218	$1,05 \cdot 10^{-4}$	72,49
16	27	0,1044	9,85 · 10 ⁻⁵	76,42
17	30	0,0982	9,03 · 10 ⁻⁵	77,82

Tabela 71. Wydajność kwantowa dla procentu konwersji MMD (filtr $\lambda = 510$ nm)

5. OMÓWIENIE I DYSKUSJA WYNIKÓW

Pierwszym antybiotykiem antracyklinowym, odkrytym w latach 50-tych XX wieku, była daunorubicyna. Wykazywała ona dużą skuteczność kliniczną, jednakże już w 1967 roku zanotowano pierwsze doniesienia o jej działaniach niepożądanych, zwłaszcza groźnej dla życia kardiotoksyczności.

Rozpoczęto zatem badania zmierzające do otrzymania nowych pochodnych daunorubicyny, o podobnej skuteczności terapeutycznej, a jednocześnie zmniejszonej kardiotoksyczności.

Okazało się, że niewielkie zmiany w strukturze związku mogą znacząco wpłynąć na spektrum działania przeciwnowotworowego. W ten sposób otrzymano doksorubicynę i kolejne antybiotyki antracyklinowe. Obecnie znanych jest około 2000 analogów antracyklin, z których 600 jest poddawanych intensywnym badaniom w celu wprowadzenia ich do terapii nowotworów.

Duża cząsteczka antracyklin stwarza możliwości modyfikacji, które polegają zarówno na modyfikacji obecnych podstawników lub wprowadzaniu nowych, jak również otrzymywaniu stereoizomerów, np. doksorubicyna i epidoksorubicyna. Modyfikacje bądź wprowadzanie nowych podstawników mogą dotyczyć zarówno cząsteczki aglikonu, jak i reszty cukrowej.

Mechanizmy działania antracyklin wykazują ścisły związek z ich budową chemiczną. Dla interkalujących właściwości antracyklin decydujące znaczenie posiada płaska budowa przestrzenna aglikonu, umożliwiająca wnikanie pomiędzy dwie nici DNA i reagowanie z zasadami materiału genetycznego. Pozostała część cząsteczki antracykliny, tzn. reszta cukrowa oraz cykloheksanowy pierścień A, nie wnika między nici DNA, pozostaje na zewnątrz podwójnej helisy. Ich rola polega na stabilizowaniu powstałego kompleksu antracyklina – DNA. W miarę postępu wiedzy na temat mechanizmu działania antracyklin zauważono, że to nie płaskie pierścienie są najbardziej istotne dla działania przeciwnowotworowego, ale pierścień D i reszta cukrowa.

W Instytucie Biotechnologii i Antybiotyków w Warszawie otrzymano dużą grupę antybiotyków antracyklinowych, modyfikowanych w reszcie cukrowej. W badaniach 3'-formamidyno podstawionych pochodnych daunorubicyny wykazano, iż związki te wykazują dużo mniejsze zdolności do tworzenia reaktywnych rodników, a tym samym, przy zachowaniu właściwości przeciwnowotworowych związku, odznaczają się dużo mniejszą toksycznością dla pozostałych komórek organizmu. Otrzymane pochodne, modyfikowane w cząsteczce daunozaminy wykazywały wysoką skuteczność i dodatkowo, w przeciwieństwie do związku wyjściowego, były w stanie pokonać barierę lekooporności.

Związane jest to z faktem, iż dla tych pochodnych topoizomeraza II nie była głównym celem ataku, zatem komórki nowotworowe posiadające zmutowany enzym były wrażliwe na działanie tych związków.

Antybiotyki antracyklinowe są wrażliwe na działanie różnych czynników fizycznych i chemicznych, a szybkość zachodzących przemian zależy nie tylko od budowy chemicznej, ale także od ich budowy przestrzennej. Najbardziej podatnym miejscem na rozkład w antybiotykach antracyklinowych jest wiązanie glikozydowe, które jest niezbędne dla ich aktywności cytotoksycznej.

W Katedrze i Zakładzie Chemii Farmaceutycznej prowadzone są badania trwałości antybiotyków antracyklinowych, zarówno w roztworach wodnych, jak i w fazie stałej. Badaniom trwałości poddano także otrzymane pochodne daunorubicyny – pirolidynową (PMD), morfolinową (MMD), piperydynową (PPD) i heksahydroazepinylową (HMD).

Celem moich badań była ocena trwałości pochodnej morfolinowej daunorubicyny, która wykazuje najsilniejsze działanie przeciwnowotworowe z 4 amidynowych pochodnych. Ponadto związek ten nie wykazuje działania kardiotoksycznego.

Zakres badań

Zaplanowane badania trwałości MMD obejmowały:

- opracowanie metody odpowiedniej do badania szybkości rozkładu w roztworach wodnych i w fazie stałej
- walidację metod (selektywność, liniowość, precyzja, granica wykrywalności i oznaczalności)
- badania trwałości w roztworach wodnych, z uwzględnieniem ogólnej i właściwej katalizy kwasowo-zasadowej (wpływ stężenia jonów wodorowych, rodzaju i stężenia składników buforów w zakresie pH 0,44 – 13,71 oraz siły jonowej); badania przeprowadzono w czterech temperaturach
- ocenę trwałości w płynach infuzyjnych; w temperaturze pokojowej, $2-8^{\circ}$ C oraz -16° C
- ocenę podatności na działanie promieniowania elektromagnetycznego o długości fali 365 nm i 510 nm
- ocenę wpływu temperatury i wilgotności względnej powietrza na trwałość w fazie stałej
- porównanie trwałości MMD ze związkiem macierzystym daunorubicyną i innymi amidynowymi pochodnymi daunorubicyny

Metody analityczne i ich walidacja

Pierwszym, bardzo ważnym etapem badań kinetycznych, jest wybór odpowiedniej metody analitycznej, umożliwiającej pomiar zmian stężenia substratu w obecności produktów rozkładu, które często posiadają budowę chemiczną zbliżoną do związku badanego. Dodatkowo metoda analityczna powinna pozwalać na wykonanie dużej ilości oznaczeń, w krótkim czasie, używając możliwie najmniejsze objętości odczynników chemicznych. W badaniach kinetycznych metodami z wyboru są wysokosprawna chromatografia cieczowa oraz w niektórych badaniach, metoda spektrofotometrii w nadfiolecie.

W badaniach trwałości MMD stosowałam metodę HPLC, natomiast metodę UV zastosowałam do wyznaczenia parametrów kinetycznych reakcji rozkładu MMD pod wpływem światła, z uwagi na szybkość tego procesu.

W metodzie HPLC zastosowałam następujące parametry rozdzielenia:

 kolumna Chromolith RP-18e, (5 μm) 100 × 4,6 mm, Merck Darmstadt, Niemcy lub Li-Chrospher 100 RP-18 (5 μm) 125 × 4 mm, Merck Darmstadt, Niemcy

- faza ruchoma: acetonitryl, metanol, roztwór zawierający 2,18 g/l laurylosiarczanu sodu i 2,25 g/l kwasu fosforowego(V) (9:1:10 V/V/V)
- szybkość przepływu fazy ruchomej: 1,0 ml/min
- długość fali detektora UV: 254 nm

W metodzie spektrofotometrycznej w nadfiolecie i zakresie widzialnym, stopień rozkładu badanej substancji określano mierząc zmiany absorbancji przy $\lambda = 480$ nm.

Przeprowadzona walidacja metod wykazała, że są one:

- liniowe w badanych zakresach stężeń
 - HPLC; w zakresie stężeń (0,80 − 12,00) × 10^{-2} mg/ml; y = (0,4528 ± 0,0116)x; r = 0,9999; n = 13; Tabela 8–9
 - UV; w zakresie stężeń (1,20 6,00) × 10^{-2} mg/ml; y = (13,31 ± 0,93)x; r = 0,9958; n = 10; Tabela 11
- precyzyjne; wartości RSD w badaniu precyzji i precyzji pośredniej nie są większe niż 5%
 - HPLC; precyzja: RSD = 1,04%; precyzja pośrednia: RSD = 2,60%
 - \circ UV; precyzja: RSD = 0,167 0,515%
- Czułe, bowiem możliwe jest rejestrowanie wartości mierzonej przy niewielkiej zmianie wartości oznaczanej
- Selektywne, bowiem w przypadku obu metod wartości c% = f(t) \rightarrow 0 w przedziale czasu od t₀ \rightarrow t_∞

Trwałość MMD w roztworach wodnych [120, 121]

Badania trwałości MMD w roztworach wodnych polegały na:

- wyznaczeniu obserwowanych stałych szybkości rozkładu w zakresie pH od 0,44 do 13,71, w temperaturze 298 K, 303 K, 308 K i 313 K
- określeniu wpływu siły jonowej w kwasie solnym (0,10 mol/l) w temperaturze 343 K i w roztworze wodorotlenku sodu (0,10 mol/l) w temperaturze 308 K
- wyznaczeniu stałych k_{pH} , opisujących właściwą katalizę kwasowo-zasadową
- opisaniu zależności log $k_{pH} = f(pH)$ równaniem kinetycznym
- obliczeniu katalitycznych stałych szybkości reakcji cząstkowych
- wyznaczeniu parametrów termodynamicznych reakcji cząstkowych

Obserwowane stałe szybkości reakcji

Obserwowane stałe szybkości reakcji pseudopierwszego rzędu wyznaczono metodą HPLC z równania ln $(P_i/P_w)_t = \ln (P_i/P_w)_0 - k_{obs} \times t$. Półlogarytmiczne wykresy c% = f(t) były prostoliniowe. Dla każdej prostej wyznaczono parametry kinetyczne, stosując arkusz kalkulacyjny Excel.

Ogólna kataliza kwasowo-zasadowa

Na szybkość rozkładu związku w roztworach wodnych mogą wpływać nie tylko jony wodorowe i wodorotlenowe ale także rozpuszczalniki i składniki roztworów buforowych. Jeżeli przy stałej wartości pH i siły jonowej, przy różnych stężeniach składników buforów, szybkość reakcji zmienia się ze zmianę stężenia buforu, mamy wówczas do czynienia z ogólną katalizą kwasowo-zasadową. Aby potwierdzić bądź wykluczyć występowanie ogólnej katalizy kwasowo-zasadowej (w roztworach buforowych – octanowym, fosforanowych i boranowym), wyznaczono obserwowane stałe szybkości rozkładu dla 3 lub 4 stężeń składników danego buforu, przy skrajnych wartościach pH, w temperaturze 313 K.

Stwierdzono, że obserwowane stałe szybkości reakcji rozkładu MMD wyznaczone przy różnych stężeniach składników buforów, przy stałej wartości siły jonowej, nie różniły się statystycznie, co potwierdzono testem równoległości. Zatem składniki buforów – octanowego, fosforanowych i boranowego, nie wykazują efektu katalitycznego, a wyznaczone obserwowane stałe szybkości reakcji rozkładu w całym zakresie pH są równe k_{pH} .

Właściwa kataliza kwasowo-zasadowa

Do interpretacji wpływu pH na trwałość MMD wykorzystano wyznaczone wartości $k_{obs} = k_{pH}$. Wykres zależności log $k_{pH} = f(pH)$ wskazuje, że w roztworach wodnych możliwe są następujące reakcje:

• hydroliza protonowanych cząsteczek MMD katalizowana jonami wodorowymi

• spontaniczna hydroliza pod wpływem wody cząsteczek MMD innych niż protonowane

MMD H2O Produkty, k2

Rycina 62. Profil log $k_{pH} = f(pH)$ reakcji rozkładu MMD w temperaturze 313 K, 308 K, 303 K i 298 K, $\mu = 0.50$ mol/l.

Całkowitą szybkość reakcji, równą sumie reakcji cząstkowych, można opisać następującym równaniem:

$$k_{pH} = k_1 a_{H^+} f_1 + k_2 f_2$$

gdzie:

 k_1 – katalityczna stała szybkości reakcji protonowanych cząsteczek MMD katalizowana jonami wodorowymi a_{H^+} – aktywność jonów wodorowych

f1 – ułamek stężenia formy protonowanej MMD

k₂ – katalityczna stała szybkości reakcji spontanicznej pod wpływem wody cząsteczek MMD innych niż cząsteczki protonowane

 f_2 – ułamek stężenia formy MMD innej niż protonowana

Do obliczenia wartości ułamków stężeń poszczególnych form jonowych MMD użyto wartości pK_a badanego związku związanego z podstawnikiem morfolinowym.

W dalszym etapie badań, wyznaczono katalityczne stałe szybkości reakcji cząstkowych. Katalityczne stałe szybkości reakcji katalizowanej jonami wodorowymi (k₁) wyznaczono z zależności $k_{pH} = k_1 a_{H+} f_1$, uwzględniając wartości k_{pH} z zakresu pH od 0,44 do ok. 3,5. W tym zakresie pH, ułamek stężenia formy protonowanej cząsteczki dąży do jedności. Wykresy $k_{pH}/f_1 = f(a_{H^+})$ (Rycina 63) są prostoliniowe, a ich nachylenie jest równe wartości k_1 w danej temperaturze.

Rycina 63. Zależność $k_{pH}/f_1 = f(a_{H^+})$ reakcji rozkładu MMD w roztworach wodnych.

Katalityczne stałe szybkości k₂ wyznaczono z zależności k'_{pH} = $k_{pH} - k_1 a_{H^+} f_1 = k_2 f_2$. Wykonano wykresy k'_{pH} = f(f₂) (Rycina 64), uwzględniając wartości k_{pH} w zakresie pH od 4,41 do 7,08, które są prostolinowe, a wartości k'_{pH} dla f₂ = 1 odpowiadają katalitycznej stałej szybkości reakcji (k₂).

Rycina 64. Zależność k' $_{pH} = f(f_2)$ reakcji rozkładu MMD w roztworach wodnych.

Wyznaczone katalityczne stałe szybkości reakcji cząstkowych (k₁ i k_{2;} Tabela 72) wykorzystano do obliczenia profilu log k_{pH} = f(pH). Na rycinie 62 przedstawiono linią ciągłą obliczony profil, natomiast punktorami zaznaczono wartości k_{pH} wyznaczone doświadczalnie. Zgodność profilu doświadczalnego z profilem obliczonym potwierdza, że zastosowano prawidłowe równanie opisujące rozkład MMD w warunkach właściwej katalizy kwasowozasadowej.

Wyznaczone wartości katalitycznych stałych szybkości reakcji rozkładu posłużyły w dalszej kolejności do wyznaczenia zależności Arrheniusa (Rycia 65), czyli zależności między katalitycznymi stałymi reakcji a odwrotnością temperatury bezwzględnej. Równanie Arrheniusa po zlogarytmowaniu przyjmuje postać:

$$\ln k_i = \ln A - E_a / RT$$

gdzie:

ki – katalityczna stała szybkości reakcji rozkładu

A – współczynnik częstotliwości; posiada wymiar taki sam jak stała szybkości reakcji

E_a – energia aktywacji

R – uniwersalna stała gazowa = 8,3144 [J K⁻¹ mol⁻¹]

T – temperatura bezwzględna (273 + t) [K]

Następnie obliczono energię aktywacji (E_a) oraz parametry termodynamiczne – entalpię (ΔH^{\neq}) i entropię reakcji (ΔS^{\neq}) z następujących wzorów:

$$E_{a} = -aR [J mol^{-1})$$
$$\Delta H^{\neq} = E_{a} - RT [J mol^{-1}]$$

$$\Delta \mathbf{S}^{\neq} = \mathbf{R} \left[\ln \mathbf{A} - \ln \left(\mathbf{kT/h} \right) \right] \left[\mathbf{J} \ \mathbf{K}^{-1} \ \mathrm{mol}^{-1} \right]$$

gdzie:

a – nachylenie wykresu ln ki = f(1/T); -a = E_a/R k – stała Boltzmanna = 1,381 · 10⁻²³ [J K⁻¹] h – stała Plancka = 6,626 · 10⁻³⁴ [J s]

Tabela 72.	Katalityczne stałe szybkości oraz parametry termodynamiczne reakcji rozkładu MMD
	w roztworach wodnych

Т, К	1/T	k _i	Parametry równania $\ln k_i = f(1/T)$	Parametry termodynamiczne
			$k_1 [mol^{-1} l s^{-1}]$	
298		8,78 10-5	r = -0,9987	$E_a = 113.4 \pm 17.6 (kJ mol^{-1})$
303		$1,72 \ 10^{-4}$	$a = -13638 \pm 2115$	$\Delta H^{\neq} = 110.9 \pm 17.6 \text{ (kJ mol^{-1})}^{*}$
308		3,57 10 ⁻⁴	$b = 36,4 \pm 6,9$	$\Delta S^{\neq} = 57.7 \pm 57.6 (J \text{ K}^{-1} \text{ mol}^{-1})^*$
313		7,88 10 ⁻⁴		
			$k_2 [s^{-1}]$	
298		3,04 10-3	r = -0,9996	$E_a = 62.0 \pm 5.5 \text{ (kJ mol}^{-1}\text{)}$
303		4,62 10-3	$a = -7462,5 \pm 660,7$	$\Delta H^{\neq} = 59.6 \pm 5.5 \text{ (kJ mol}^{-1})^{*}$
308		6,68 10-3	$b = 19,2 \pm 2,2$	$\Delta S^{\neq} = -84,8 \pm 18,0 \text{ (J K}^{-1} \text{ mol}^{-1})^*$
313		10,2 10-3		

* w temp. 298 K

Obserwowana wyższa entropia reakcji katalizowanej jonami wodorowymi w porównaniu z reakcją spontaniczną pod wpływem wody może być uzasadniona dodatnim udziałem entropii reakcji protonowania.

Porównanie profilu log $k_{pH} = f(pH)$ daunorubicyny, MMD, PMD i HMD [106, 121 – 123]

Porównanie zależności log $k_{pH} = f(pH)$ daunorubicyny i jej trzech amidynowych pochodnych (Rycina 66) pozwala na stwierdzenie, iż:

- w całym zakresie pH, daunorubicyna jest związkiem trwalszym niż jej amidynowe pochodne
- najmniejsze różnice w szybkości reakcji rozkładu są obserwowane w środowisku kwasowym, w którym dominującą reakcją jest rozkład katalizowany jonami wodorowymi
- powyżej pH 4, amidynowe pochodne są znacznie bardziej podatne na rozkład aniżeli daunorubicyna
- w zakresie pH od ok. 4 do ok. 11, MMD jest związkiem najbardziej podatnym na rozkład

Rycina 66. Profile log $k_{pH} = f(pH)$ daunorubicyny (DAU), pirolidynometylenodaunorubicyny (PMD), heksahydroazpinylometylenodaunorubicyny (HMD) i morfolinometylenodaunorubicyny (MMD) w temperaturze 313 K.

Wpływ siły jonowej

Do interpretacji wpływu siły jonowej na trwałość MMD zastosowano równanie Brönsteda-Bjerruma:

$$\log k_{obs} = \log k_0 + 2QZ_A Z_B \frac{\sqrt{\mu}}{1 + \sqrt{\mu}}$$

gdzie:

 ki obserwowane stałe szybkości reakcji wyznaczone w 0,10 mol/l kwasie solnym, w temperaturze 343 K i w roztworach wodorotlenku sodu 0,10 mol/l w temperaturze 308 K; badania prowadzono stosując roztwory o sile jonowej odpowiednio: 0,10; 0,20; 0,30; 0,40 i 0,50 mol/l
 k wortość stałaj szrbkości reakcji przy wartość silw jonowaj równej zero

k₀ wartość stałej szybkości reakcji przy wartości siły jonowej równej zero

 $Z_A \, i \, Z_B \qquad \ \ ladunek \ reagujących \ cząsteczek$

μ wartość siły jonowej

2Q = 1,02 w temperaturze $25^{\circ}C$ w roztworach wodnych

Wykonano wykresy log $k_{obs} = f(\sqrt{\mu}/(1+\sqrt{\mu}))$ (Rycina 67–68), a następnie zależności te oceniono statystycznie (Tabela 73).

Stwierdzono, że w kwasie solnym (0,10 mol/l) występuje dodatni efekt solny ($a = 1,24 \pm 0,16$), co potwierdza zaproponowany kinetyczny mechanizm reakcji hydrolizy cząsteczek protonowanych MMD pod wpływem jonów wodorowych.

W roztworze wodorotlenku sodu (0,10 mol/l) występuje zerowy efekt solny ($a = 0,14 \pm 0,39$), co potwierdza, iż w tym zakresie pH ma miejsce reakcja spontaniczna pod wpływem wody, a nie reakcja monoanionów MMD, katalizowana jonami wodorotlenowymi.

1,00E-02 k_µ s⁻⁴ 1,00E-03 1,00E-04 0 0,1 0,2_{µ/(1+Vµ},0,3 0,4 0,5

Rycina 67.

Rycina 68.

Zależność log k_i = f($\sqrt{\mu}/(1+\sqrt{\mu})$) reakcji rozkładu MMD w 0,10 mol/l kwasie solnym w temperaturze 343 K. Zależność log k_i = $f(\sqrt{\mu}/(1+\sqrt{\mu}))$ reakcji rozkładu MMD w 0,10 mol/l roztworze wodorotlenku sodu w temperaturze 308 K.

Tabela 73.Wpływ siły jonowej na szybkość reakcji rozkładu MMD w 0,10 mol/l kwasie solnym
(343 K) i 0,10 mol/l roztworze wodorotlenku sodu (308 K)

Lp.	$\sqrt{\mu}/1 + \sqrt{\mu}$	k _i , s ⁻¹	Parametry równania log k _i = f($\sqrt{\mu}/(1+\sqrt{\mu})$)		
0,10 mol/l HCl; 343 K					
1.	0,2403	$(1,89\pm0,13)\ 10^{-3}$			
2.	0,3090	$(2,04 \pm 0,07) \ 10^{-3}$	$a = 1,24 \pm 0,16$		
3.	0,3539	$(2,56 \pm 0,26) \ 10^{-3}$	$S_a = 0.0506$ r = 0.0075		
4.	0,3874	$(2,82\pm0,11)\ 10^{-3}$	n = 5		
5.	0,4142	$(3,12\pm0,10)\ 10^{-3}$			
0,10 mol/l NaOH; 308 K					
1.	0,2403	$(6,32\pm0,44)\ 10^{-3}$			
2.	0,3090	$(6,02\pm0,44)\ 10^{-3}$	$a = 0.143 \pm 0.397$		
3.	0,3539	$(6,38 \pm 0,54) \ 10^{-3}$	$S_a = 0,122$ r = 0.5616		
4.	0,3874	$(6,73\pm0,80)\ 10^{-3}$	n = 5		
5.	0,4142	$(6,46 \pm 1,11) \ 10^{-3}$			

Przeprowadzone badania trwałości MMD w roztworach wodnych wykazały, że:

- w warunkach właściwej katalizy kwasowo-zasadowej badany związek wykazuje największą trwałość przy pH ok. 2,5
- składniki buforu octanowego, buforów fosforanowych oraz buforu boranowego nie wykazują efektu katalitycznego
- w kwasie solnym występuje dodatni efekt solny, natomiast w roztworach wodorotlenku sodu – zerowy efekt solny
- jest ona najbardziej podatna na rozkład spośród trzech amidynowych pochodnych daunorubicyny w zakresie pH od 4 do 11

Trwałość MMD w roztworach do podania parenteralnego [124]

Celem badań było określenie:

- wpływu powszechnie stosowanych rozpuszczalników iniekcyjnych na trwałość MMD
- ochronnego znaczenia opakowania (polietylenowe ampułki i polipropylenowe strzykawki) na trwałość MMD w wybranych rozpuszczalnikach iniekcyjnych
- wpływu stężenia MMD (0,2 1,5 mg/ml) na trwałość w wybranym rozpuszczalniku iniekcyjnym

Dla porównania wpływu w/w czynników, wyznaczono obserwowane stałe szybkości rozkładu MMD, które porównywano statystycznie.

Trwałość MMD w powszechnie stosowanych rozpuszczalnikach do pozajelitowych postaci leku w temperaturze pokojowej

Porównanie wartości obserwowanych stałych szybkości rozkładu MMD w wybranych rozpuszczalnikach (wodzie do iniekcji, 0,9% roztworze NaCl, 5% roztworze glukozy, 10% roztworze glukozy, 20% roztworze glukozy, roztworze Ringera, mleczanie Ringera, roztworze 5% glukozy z 0,9% NaCl (1:1), roztworze 5% glukozy z 0,9% NaCl (2:1), Jonosterilu oraz 20% roztworze mannitolu) pozwala na stwierdzenie, że:

- MMD jest najtrwalsza w 20% roztworze glukozy
- MMD zachowuje odpowiednią trwałość także w 10% roztworze glukozy, roztworze glukozy z 0,9% NaCl (2:1 i 1:1) i 5% roztworze glukozy; w roztworach tych MMD ulega rozkładowi z podobną szybkością
- MMD wykazuje najmniejszą trwałość w mleczanie Ringera oraz Jonosterilu

Rycina 69. Wartości $t_{10\%}$ MMD w wybranych rozpuszczalnikach.

Największą trwałość MMD wykazuje w roztworach glukozy o odczynie kwasowym, co wykazano także w zależności log $k_{pH} = f(pH)$, gdzie optymalne pH dla trwałości roztworów MMD wynosiło ok. 2,5 [121]. Także w badaniach przeprowadzonych przez Wooda i wsp. wykazano, że daunorubicyna wykazuje największą trwałość po rozpuszczeniu w roztworach glukozy [103].

Po rozpuszczeniu MMD w płynie pediatrycznym wyrównawczym oraz płynie fizjologicznym wieloelektrolitowym izotonicznym z mieszaniny wytrącił się osad. Zjawisko to wyklucza użycie tych płynów jako rozpuszczalników do przygotowania pozajelitowych roztworów MMD, nawet ex tempore. Podanie takiego preparatu mogłoby spowodować zmianę biodostępności leku, bolesność w miejscu podania lub nawet zakrzepowe zapalenie żył [125].

Badanie wpływu opakowania na trwałość roztworów MMD

Celem tego etapu badań było wykazanie wpływu opakowania (ampułek polietylenowych i polipropylenowych strzykawek) na rozkład roztworów MMD w wybranych płynach do sporządzania pozajelitowych postaci leku (0,9% roztworze NaCl, wodzie do iniekcji i 5% roztworze glukozy), chronionych i niechronionych przed światłem. Następnie testem równoległości porównano statystycznie współczynniki kierunkowe (*a*) prostych ln (P_{DD-2} / P_w)_t/(P_{DD-2} / P_w)₀ × 100 [%] = f(t), wyznaczone dla reakcji rozkładu MMD. Stwierdzono, że polietylenowe ampułki nie zapewniają właściwej ochrony roztworom MMD przed działaniem światła. Optymalną ochronę przed fotorozkładem zapewnia przechowywanie roztworów w strzykawkach z polipropylenu. Wyniki zostały przedstawione w tabelach 74 – 76.

Tabela 74. Parametry kinetyczne oraz wyniki testu równoległości reakcji rozkładu roztworów MMD przechowywanych w polietylenowych ampułkach, chronionych i niechronionych przed światłem

Rozpuszczalnik	Roztwory MMD chronione przed światłem		Roztwory MMD niechronione przed światłem		Wyniki testu równoległości
	$k_{obs} [s^{-1}] \times 10^{-5}$	$a [\min^{-1}] \times 10^{-3}$	$k_{obs} [s^{-1}] \times 10^{-5}$	$a [\min^{-1}] \times 10^{-3}$	t _{obl} , t _{0,05}
Woda do iniekcji	2,83 ± 0,08	$-1,70 \pm 0,05$	3,47 ± 0,24	$-2,08 \pm 0,14$	$t_{obl} = 6,5052$ $t_{0,05} = 2,1788$
0,9% NaCl	2,83 ± 0,88	$-1,70 \pm 0,53$	3,78 ± 0,42	-2,27 ± 0,25	$t_{obl} = 2,4630$ $t_{0,05} = 2,2281$
5% Glukoza	2,33 ± 0,20	$-1,40 \pm 0,12$	2,74 ± 0,34	$-1,64 \pm 0,02$	$t_{obl} = 2,6161$ $t_{0,05} = 2,1788$

Tabela 75. Parametry kinetyczne oraz wyniki testu równoległości reakcji rozkładu roztworów MMD przechowywanych w polipropylenowych strzykawkach, chronionych i niechronionych przed światłem

Rozpuszczalnik	Roztwory MMD chronione przed światłem		Roztwory MMD niechronione przed światłem		Wyniki testu równoległości
	$k_{obs} [s^{-1}] \times 10^{-5}$	$a [\min^{-1}] \times 10^{-3}$	$k_{obs} [s^{-1}] \times 10^{-5}$	$a [\min^{-1}] \times 10^{-3}$	$t_{obl}, t_{0,05}$
Woda do iniekcji	3,01 ± 0,27	-1,81 ± 0,16	2,73 ± 0,49	$-1,64 \pm 0,29$	$t_{obl} = 1,2501$ $t_{0,05} = 2,1788$
0,9% NaCl	2,82 ± 0,19	-1,69 ± 0,11	2,91 ± 0,33	-1,75 ± 0,20	$t_{obl} = 0,5870$ $t_{0,05} = 2,1788$
5% Glukoza	2,57 ± 0,16	-1,54 ± 0,09	$2,62 \pm 0,20$	-1,57 ± 0,01	$t_{obl} = 0,4224$ $t_{0,05} = 2,1788$

Dobre właściwości ochronne polipropylenu oraz brak znaczącej adsorbcji antracyklin na powierzchni wykonanych z niego strzykawek potwierdzono także w badaniach prowadzonych przez Wooda i wsp., gdzie określono wpływ opakowania na trwałość roztworów iniekcyjnych doksorubicyny, daunorubicyny i epirubicyny [103].

Wpływ stężenia MMD (0, 2 - 1, 5 mg/ml) na trwałość po rozpuszczeniu w 0,9% NaCl

Po sporządzeniu roztworów MMD w 0,9% NaCl, w zakresie stężeń 0,2 – 1,5 mg/ml, stwierdzono, że stężenie substratu nie ma wpływu na kinetyczny mechanizm rozkładu oraz szybkość reakcji rozkładu, zarówno gdy roztwory były chronione, jak i niechronione przed światłem (Tabela 76). Pewne odstępstwa zaobserwowano dla roztworu o stężeniu 0,5 mg/ml, gdzie stała szybkości rozkładu roztworu niechronionego przed światłem różniła się istotnie statystycznie od stałej szybkości rozkładu roztworu chronionego przed światłem.

Stężenie sub- stratu	Roztwory MMD chronione przed światłem		Roztwory MMD niechronione przed światłem		Wyniki testu równoległości
	$k_{obs} [s^{-1}] \times 10^{-5}$	$a [\min^{-1}] \times 10^{-3}$	$k_{obs} [s^{-1}] \times 10^{-5}$	$a [\min^{-1}] \times 10^{-3}$	$t_{obl}, t_{0,05}$
0,2 mg/ml	$2,20 \pm 0,37$	$-1,31 \pm 0,22$	$2,30 \pm 0,14$	-1,38 ± 0,08	$t_{obl} = 0,6432$ $t_{0,05} = 2,2281$
0,3 mg/ml	2,48 ± 0,18	$-1,49 \pm 0,11$	2,68 ± 0,24	$-1,61 \pm 0,15$	$t_{obl} = 1,6583$ $t_{0,05} = 2,1788$
0,5 mg/ml	2,83 ± 0,88	$-1,70 \pm 0,53$	3,78 ± 0,42	$-2,27 \pm 0,25$	$t_{obl} = 2,4630$ $t_{0,05} = 2,2281$
1,5 mg/ml	2,56 ± 0,22	-1,54 ± 0,13	2,55 ± 0,35	-1,53 ± 0,21	$t_{obl} = 0,0998$ $t_{0,05} = 2,2281$

 Tabela 76.
 Parametry kinetyczne oraz wyniki testu równoległości reakcji rozkładu roztworów MMD

 przechowywanych w pojemnikach PE, chronionych i niechronionych przed światłem

Trwałość MMD w powszechnie stosowanych rozpuszczalnikach do pozajelitowych postaci leku w temperaturze $2-8^{\circ}C$

W badaniach trwałości MMD w powszechnie stosowanych rozpuszczalnikach do pozajelitowych postaci leku w temperaturze $2-8^{\circ}$ C, jako trwałe definiowano te roztwory, w których ubytek substratu nie przekraczał 10% w stosunku do wartości w czasie t = 0.

Oceniając zawartość MMD po rozpuszczeniu w wybranych roztworach do podania parenteralnego, przechowywanych w temperaturze 2–8°C, stwierdzono, że po 6 h przechowywania, jedynie w 5%, 10% i 20% roztworze glukozy, ubytek stężenia MMD był mniejszy niż 10%. W tym samym czasie, największy ubytek substratu zaobserwowano w Jonosterilu i płynie pediatrycznym wyrównawczym. Po 24 h przechowywania w tych samych warunkach, ubytek stężenia MMD w każdym z badanych roztworów przekraczał dopuszczalną granicę 10% i był największy w płynie pediatrycznym wyrównawczym (Rycina 70–71).

Rycina 71. Zmiana stężenia MMD w rozpuszczalnikach do podania parenteralnego przechowywanych 24 h w temperaturze $2-8^{0}$ C.

Trwałość MMD w powszechnie stosowanych rozpuszczalnikach do pozajelitowych postaci leku w temperaturze $-16^{\circ}C$

W badaniach trwałości MMD w powszechnie stosowanych rozpuszczalnikach do pozajelitowych postaci leku w temperaturze -16^{0} C, jako trwałe definiowano te roztwory, w których ubytek substratu nie przekraczał 10% w stosunku do wartości w czasie t = 0. Przechowywanie roztworów MMD w temperaturze -16^oC jest możliwe tylko w przypadku 10% i 20% roztworu glukozy. W pozostałych roztworach ubytek substratu przekraczał po 30 dniach przechowywania dopuszczalną granicę i był największy w płynie fizjologicznym wieloelektrolitowym izotonicznym (Rycina 72).

Rycina 72. Zmiana stężenia MMD w rozpuszczalnikach do podania parenteralnego przechowywanych 30 dni w temperaturze -16° C.

Trwałość MMD w fazie stałej[126, 127]

Badania w fazie stałej przeprowadzono w atmosferze powietrza o wilgotności względnej ~76,4% oraz 0%. Zmiany stężenia substratu analizowano metodą HPLC, stosując parametry rozdzielenia takie same, jak w przypadku badań w roztworach wodnych.

Rozkład MMD w podwyższonej temperaturze, przy RH \sim 76,4% zachodził zgodnie z modelem reakcji autokatalitycznej pierwszego rzędu względem stężenia substratu, natomiast przy RH = 0%, zgodnie z kinetyką reakcji pierwszego rzędu względem stężenia substratu.

Rozkład daunorubicyny i PMD w atmosferze powietrza o podwyższonej wilgotności względnej zachodził także zgodnie z modelem reakcji autokatalitycznej pierwszego rzędu względem stężenia substratu [127]. W przypadku PPD zaobserwowano, że w atmosferze powietrza o podwyższonej wilgotności rozkład zachodził zgodnie z modelem reakcji pierwszego rzędu względem stężenia substratu, natomiast przy RH = 0% według reakcji autokatalitycznej pierwszego rzędu względem stężenia substratu. Obserwowane stałe szybkości reakcji wyzna-

czono z półlogarytmicznej zależności $c_t/(c_0 - c_t) = f(t)$ w przypadku reakcji autokatalitycznej lub z półlogarytmicznej zależności $c_t = f(t)$ w przypadku reakcji pierwszego rzędu względem stężenia substratu.

Z zależności Arrheniusa wyznaczono parametry równania ln $k_i = f(1/T)$ (Rycina 73), na podstawie których wyznaczono energię aktywacji oraz parametry termodynamiczne reakcji rozkładu MMD w fazie stałej, przy RH ~76,4%, które porównano z wynikami uzyskanymi dla daunorubicyny oraz PMD i PPD.

Tabela 77.Parametry prostej ln $k_i = f(1/T)$ oraz parametry termodynamiczne reakcji rozkładu dau-
norubicyny, PMD, MMD i PPD w fazie stałej, RH = 76,4%

T [K]	1/T 10 ⁻³	$(\mathbf{k} \pm \Delta \mathbf{k}) [\mathbf{s}^{-1}]$	Parametry równania ln $k_i = f(1/T)$	Parametry termodynamiczne	
MMD					
323	3,096	$(1,03\pm0,23)\cdot10^{-5}$			
333	3,003	$(2,37\pm0,25)\cdot10^{-5}$	$a = -13316 \pm 4639$	$E_a = 110,7 \pm 38,6 \text{ [kJ/mol]}$	
343	2,915	$(10,1\pm0,7)\cdot10^{-5}$	$b = 29,6 \pm 13,7$	$\Delta H^{\neq} = 135,2 \pm 35,1 \text{ [kJ/mol]}^{*}$	
353	2,833	$(31,6\pm 8,7)\cdot 10^{-5}$	r = -0,9935	$\Delta S^{\neq} = 149,3 \pm 303,2 [J/(K \cdot mol)]^{*}$	
	1	ſ	DAU	I	
333	3,003	$(7,12\pm0,81)\cdot10^{-7}$			
343	2,915	$(5,32\pm0,71)\cdot10^{-6}$	$a = -16581 \pm 3972$	$E_a = 138,2 \pm 33,5 \text{ [kJ/mol]}$	
353	2,833	$(2,26\pm0,38)\cdot10^{-5}$	$b = 35,9 \pm 11,3$	$\Delta H^{\neq} = 108,2 \pm 41,1 \text{ [kJ/mol]}^{*}$	
363	2,755	$(5,25\pm1,95)\cdot10^{-5}$	r = -0,9916	$\Delta S^{\neq} = 1,13 \pm 130,61 [J/(K \cdot mol)]^{*}$	
373	2,681	$(17,5\pm0,2)\cdot10^{-5}$			
PMD					
343	2,915	$(0,91\pm0,11)\cdot10^{-5}$			
353	2,833	$(4,27\pm0,39)\cdot10^{-5}$	$a = -14647 \pm 4145$	$E_a = 121,8 \pm 34,5 \text{ [kJ/mol]}$	
363	2,755	$(13,8\pm1,5)\cdot10^{-5}$	$b = 31,3 \pm 11,6$	$\Delta H^{\neq} = 119,3 \pm 36,9 [kJ/mol]^*$	
373	2,681	$(29,9\pm3,1)\cdot10^{-5}$	r = -0,9961	$\Delta S^{\neq} = 15,3 \pm 148,5 [J/(K \cdot mol)]^{*}$	
PPD PPD					
343	2,915	$(0,76\pm0,15)\cdot10^{-6}$			
353	2,833	$(0,56\pm0,06)\cdot10^{-5}$	$a = -21950 \pm 13232$	$E_a = 182,5 \pm 110,0 \text{ [kJ/mol]}$	
363	2,755	$(5,68\pm0,51)\cdot10^{-5}$	$b = 50,1 \pm 37,0$	$\Delta H^{\neq} = 180,0 \pm 112,5 \text{ [kJ/mol]}^{*}$	
373	2,681	$(10,4\pm0,9)\cdot10^{-5}$	r = -0,9810	$\Delta S^{\neq} = 171,5 \pm 62,8 [J/(K \cdot mol])$	

* dla temperatury 298 K

Stosując test równoległości wykazano, że wartości nachylenia wykresów ln $k_i = f(1/T)$ dla MMD i daunorubicyny oraz PMD i PPD nie różnią się istotnie statystycznie $t_{obl} = 0.821 <$

 $t_{0,05}(5) = 2,571$, a zatem wpływ temperatury na rozkład wszystkich związków przy RH ~76,4% nie wykazuje różnic statystycznie istotnych. W tabeli 77 przedstawiono parametry termodynamiczne reakcji rozkładu MMD, DAU, PMD i PPD w warunkach wilgotności względnej powietrza ok. 76,4%.

Rycina 73. Półlogarytmiczna zależność $k_i = f(1/T)$ reakcji rozkładu MMD, PMD, HMD i DAU w fazie stałej, RH 76,4%.

Wpływ wilgotności względnej powietrza na trwałość MMD

Wpływ wilgotności względnej powietrza na trwałość MMD badano w temperaturze 353 K. Wpływ ten opisuje równanie:

$$\ln \mathbf{k_i} = a (\mathbf{RT\%}) + b$$

Wartość nachylenia *a* wykresu ln $k_i = f(RH\%)$ określa wpływ wilgotności względnej powietrza na trwałość, natomiast wartość $10^b = k_0$ przy RH = 0% (Rycina 74). Uzyskane wyniki dla MMD porównano z wpływem wilgotności względnej powietrza na trwałość daunorubicyny.

Stosując test równoległości wykazano, że wpływ wilgotności względnej powietrza na trwałość MMD i DAU nie wykazuje różnic statystycznie istotnych ($t_{obl} = 2,2537 < t_{0,05}$ (4) = 2,7764).

RH [%]	$(\mathbf{k} \pm \Delta \mathbf{k}) [\mathbf{s}^{-1}]$	Parametry zależności ln $k_i = f(RH \%)$	
MMD			
60,5	$(4,47\pm0,32)\ 10^{-5}$		
66,5	$(7,15\pm0,59)\ 10^{-5}$	$a = 0,09424 \pm 0,06382$	
76,4	$(3,16\pm0,87)\ 10^{-4}$	$b = -15,66 \pm 4,73$	
90,0	$(6,37 \pm 1,46) \ 10^{-4}$	r = 0,9761	
DAU			
25,0	$(2,19\pm0,66)\ 10^{-6}$		
50,9	$(1,73 \pm 0,31) \ 10^{-5}$	$a = 0,06068 \pm 0,02358$	
76,4	$(5,25 \pm 1,95) \ 10^{-5}$	$b = -14,38 \pm 1,54$	
90,0	$(1,29\pm0,15)\ 10^{-4}$	r = 0,9919	

Tabela 78. Wpływ wilgotności względnej powietrza na trwałość MMD I DAU

Rycina 74. Półlogarytmiczna zależność k_i = f(RH, %) reakcji rozkładu MMD i DAU w temperaturze 363 K.

Podsumowując etap badań MMD w fazie stałej można stwierdzić, iż:

- kinetyczny mechanizm rozkładu MMD zależy od warunków przechowywania. W atmosferze powietrza o RH ~76,4% rozkład zachodzi zgodnie z modelem reakcji autokatalitycznej pierwszego rzędu względem stężenia substratu, natomiast przy RH = 0% zgodnie z równaniem reakcji pierwszego rzędu względem stężenia substratu.
- nie zaobserwowano różnic statystycznie istotnych we wpływie temperatury na rozkład PMD, MMD, HMD i DAU oraz wpływie wilgotności względnej powietrza na rozkład MMD i DAU.

Fototrwałość MMD w roztworach wodnych [128]

Badania fototrwałości substancji i produktów leczniczych są regulowane dokumentem *Photo-stability Testing of New Active Substances and Medicinal Products* (Q1B), który jest dokumentem obowiązującym od 1998 roku.

W pierwszym etapie badań fotostabilności określono czy substancja jest fotostabilna czy też fotolabilna. W tym celu stosowano aktynometr chemiczny, którym był roztwór chlorowodorku chininy. Ekspozycję na promieniowanie prowadzono do zmiany absorbancji roztworu aktynometru chemicznego $\Delta A = 0,9$. Jeżeli w tych samych warunkach absorbancja substancji badanej nie ulegnie zmianie, substancję uznaje się jako fotostabilną. MMD ulegała znaczącemu rozkładowi w czasie gdy absorbancja aktynometru chemicznego zmieniła się o 0,2, a zatem według wytycznych ICH należy ją uznać za fotolabilną.

Do oceny ilościowej procesu fotodegradacji, badane roztwory poddano ekspozycji na promieniowanie o $\lambda_{maks} = 365$ nm i 510 nm. W czasie ekspozycji na promieniowanie obserwowano zmiany w widmie absorpcji, z zanikiem pasma absorpcji w maksimum przy około 480 nm. Procesowi fotodegradacji towarzyszyło całkowite odbarwienie badanego roztworu podczas naświetlania promieniowaniem o $\lambda_{maks} = 510$ nm lub zmniejszenie intensywności zabarwienia roztworu przy ekspozycji na promieniowanie o $\lambda_{maks} = 365$ nm.

Podczas ekspozycji wodnego roztworu MMD na promieniowanie, absorbancja zmieniała się od $c_0 \rightarrow 0$; otrzymano liniową zależność ln c = f(t), a zatem reakcja fotodegradacji przebiegała zgodnie z modelem reakcji pierwszego rzędu względem stężenia substratu. Z zależności ln c = f(t) wyznaczono obserwowane stałe szybkości reakcji rozkładu, które w podanych warunkach wynoszą:

- $\lambda = 365 \text{ nm}; \text{ k} = (1,57 \pm 0,04)10^{-4} \text{ s}^{-1}$
- $\lambda = 510$ nm; k = (8,83 ± 0,64)10⁻⁴ s⁻¹

Stosując radiometr zaopatrzony w odpowiedni sensor, możliwe było wyznaczenie pozornych wydajności kwantowych, a następnie przez ekstrapolację do zerowego czasu naświetlania – rzeczywistych wydajności kwantowych Φ , które wynosiły odpowiednio $5,29 \cdot 10^{-5}$ dla $\lambda = 365$ nm i $1,75 \cdot 10^{-4}$ dla $\lambda = 510$ nm. Wydajności kwantowe zmian stężenia substratu i pierwotnych reakcji fotochemicznych, zgodnie z prawem Starka-Einsteina, powinny być równe jedności. Wyższe wartości Φ mogą wskazywać na wtórne procesy fotochemiczne, generowane przez pierwotne produkty rozkładu. W przypadku reakcji w roztworach wodnych, wydajności kwantowe przyjmują często wartości niższe od jedności, co może być spowodowane dezaktywacją cząsteczek badanego związku przez cząsteczki rozpuszczalnika.

Zależności ln $\varphi_i = f(t)$ dla MMD są prostoliniowe (Rycina 75), jednakże zaobserwowano znaczny rozrzut wyników. Może to być spowodowane zanieczyszczeniem próbek substratami syntezy i potencjalnymi produktami rozkładu, które mogą wygaszać albo nasilać procesy fo-todegradacyjne macierzystego związku.

Rycina 75. Zależność ln $\phi_i = f(t)$ dla MMD; filtr $\lambda_{maks} = 365$ nm i $\lambda_{maks} = 510$ nm.

6. WNIOSKI

- N-[(morfolino)metyleno]daunorubicyna (MMD) w roztworach wodnych ulega rozkładowi zgodnie z kinetyką reakcji pseudopierwszego rzędu względem stężenia substratu. W reakcji rozkładu występuje tylko właściwa kataliza kwasowo-zasadowa, na którą składają się:
 - hydroliza protonowanych cząsteczek MMD katalizowana jonami wodorowymi
 - hydroliza spontaniczna pod wpływem wody cząsteczek innych niż protonowane.

W warunkach właściwej katalizy kwasowo-zasadowej, MMD jest najbardziej trwała w roztworach o pH 2,5. MMD wykazuje znaczące różnice w trwałości w porównaniu do związku macierzystego – daunorubicyny. Największe różnice w trwałości obserwowane są w zakresie pH od ok. 4 do ok. 12.

- 2. Optymalnym pod względem trwałości roztworem do podania parenteralnego MMD jest roztwór Injectio Glucosi 20%. Największy ubytek MMD w temperaturze pokojowej zaobserwowano w Jonosterilu i mleczanie Ringera. Polietylenowe ampułki nie zapewniają właściwej ochrony roztworom MMD przed działaniem światła. Przechowywanie roztworów MMD do 24 godzin w temperaturze 2–8°C jest możliwe tylko w roztworach glukozy.
- 3. Kinetyczny mechanizm rozkładu MMD w fazie stałej zależy od warunków przechowywania. W warunkach podwyższonej temperatury i podwyższonej wilgotności względnej powietrza rozkład zachodził zgodnie z modelem reakcji autokatalitycznej pierwszego rzędu względem stężenia substratu, podczas gdy przy RH = 0 reakcja rozkładu zachodziła zgodnie z modelem reakcji pierwszego rzędu względem stężenia substratu.
- Rozkład fotochemiczny MMD zachodzi wg równania reakcji pierwszego rzędu względem stężenia substratu. Szybkość reakcji fotodegradacji zależy od długości fali promieniowania i jest większa w przypadku promieniowania o długości fali 510 nm niż 365 nm.
7. STRESZCZENIE

Celem badań była ocena trwałości *N*-[(morfolino)metyleno]daunorubicyny (MMD) w roztworach wodnych, w warunkach właściwej katalizy kwasowo-zasadowej, w roztworach do podania parenteralnego oraz pod wpływem światła. Dodatkowo wyznaczono kinetyczny mechanizm rozkładu MMD w fazie stałej, określono wpływ temperatury przy RH ~76,4% oraz wpływ wilgotności względnej w temperaturze 363 K na trwałość MMD. Do oceny zmian stężenia badanego związku zastosowano metodę HPLC, natomiast w przypadku reakcji fotodegradacji – metodę UV-VIS.

W metodzie HPLC zastosowano podane poniżej parametry rozdzielenia, które umożliwiały ocenę zmian substratu w obecności produktów rozkładu i wzorca wewnętrznego:

- kolumna: Chromolith RP-18e, (5 μm) 100 × 4,6 mm, Merck Darmstadt, Niemcy lub LiChrospher 100 RP-18 (5 μm) o wymiarach 125 × 4 mm, Merck Darmstadt, Niemcy
- faza ruchoma: mieszanina (1:1) roztworów A₁ i A₂:
 - roztwór A1: metanol, acetonitryl (1:9 *V/V*)
 - roztwór A2: 2,88 g laurylosiarczanu sodu, 1,6 ml kwasu fosforowego(V) (85%), woda ad 1000 ml (m/V/V)
- szybkość przepływu fazy ruchomej: 1,5 ml/min
- detektor: spektrofotometr UV, $\lambda = 254$ nm
- wzorzec wewnętrzny: roztwór chlorowodorku chininy.

Metodę HPLC oraz UV-VIS poddano walidacji, określając następujące parametry: selektywność, liniowość, precyzję, granicę wykrywalności i granicę oznaczalności.

Badania kinetyczne reakcji rozkładu MMD w roztworach wodnych wykonano w zakresie pH od 0,43 do 13,71 w temperaturze 313 K, 308 K, 298 K i 293 K. Rozkład MMD w roztworach wodnych zachodził zgodnie z modelem reakcji pseudopierwszego rzędu względem stężenia substratu i opisany był następującym równaniem:

$$\ln c_t = \ln c_0 - k_{obs} \cdot t$$

W żadnym z badanych roztworów buforowych nie zaobserwowano występowania ogólnej katalizy kwasowo-zasadowej, zatem w całym zakresie pH, wyznaczona wartość obserwowanej stałej szybkości reakcji $k_{obs} = k_{pH}$.

Na właściwą katalizę kwasowo-zasadową reakcji rozkładu PMD składają się następujące reakcje cząstkowe:

- reakcja rozkładu protonowanych cząsteczek MMD pod wpływem jonów wodorowych
- hydroliza spontaniczna pod wpływem wody cząsteczek MMD innych niż protonowane.
 Całkowita szybkość reakcji jest opisana następującym równaniem:

$$\mathbf{k}_{\mathbf{p}\mathbf{H}} = \mathbf{k}_{\mathbf{l}}\mathbf{a}_{\mathbf{H}}\mathbf{f}_{\mathbf{l}} + \mathbf{k}_{\mathbf{2}}\mathbf{f}_{\mathbf{2}}$$

Uwzględniając wartości k_{pH} z zakresu pH od 0,44 do ok. 3,5 z zależności $k_{pH}/f_1 = f(a_{H^+})$ wyznaczono katalityczne stałe szybkości k_1 , które są równe nachyleniu powyższego wykresu.

Katalityczne stałe szybkości k₂ wyznaczono z zależności k'_{pH} = $k_{pH} - k_1 a_H + f_1 = k_2 f_2$. Wykonano wykresy k'_{pH} = f(f₂), uwzględniając wartości k_{pH} w zakresie pH od 4,41 do 7,08, które są prostolinowe, a wartości k'_{pH} dla f₂ = 1 odpowiadają katalitycznej stałej szybkości reakcji (k₂).

W warunkach właściwej katalizy kwasowo-zasadowej, MMD wykazuje największą trwałość przy pH ok. 2,5.

Wyznaczone katalityczne stałe szybkości reakcji posłużyły do wyznaczenia energii aktywacji, a następnie parametrów termodynamicznych reakcji – entalpii i entropii reakcji.

W badaniach trwałości MMD w powszechnie stosowanych roztworach do podania parenteralnego, badania prowadzono w temperaturze pokojowej, w temperaturze 2–8°C oraz -16°C. W badaniach trwałości w temperaturze pokojowej, wyznaczono obserwowane stałe szybkości rozkładu MMD, uwzględniając rodzaj rozpuszczalnika, rodzaj opakowania, ochronę przed światłem oraz wpływ stężenia MMD.

W badaniach trwałości MMD w temperaturze 2–8°C oraz -16°C, jako trwałe definiowano te roztwory, w których ubytek substratu nie przekraczał 10% wartości początkowej. Stwierdzono, że MMD zachowuje wymaganą trwałość

- w temperaturze pokojowej po 24 h przechowywania w 20% roztworze glukozy
- w temperaturze 2–8°C po 6 h przechowywania w roztworach glukozy (20%, 10% i 5%), natomiast po 24 h przechowywania w 20% i 10% roztworze glukozy
- w temperaturze -16°C po 30 dniach przechowywania w 10% i 20% roztworze glukozy.

Wykazano także, iż ampułki polietylenowe nie chronią roztworów MMD przed wpływem światła, natomiast wpływ taki wykazują polipropylenowe strzykawki.

MMD jest związkiem podatnym na rozkład w fazie stałej. Kinetyczny mechanizm jej rozkładu w fazie stałej zależy od warunków przechowywania – w warunkach podwyższonej wilgotności względnej powietrza, rozkład MMD zachodził zgodnie z równaniem reakcji autokatalitycznej pierwszego rzędu względem stężenia substratu, natomiast przy RH = 0%, zgodnie z równaniem reakcji pierwszego rzędu względem stężenia substratu.

MMD w roztworach wodnych jest także związkiem podatnym na rozkład fotochemiczny, który zachodzi zgodnie z modelem reakcji pierwszego rzędu względem stężenia substratu. Przeprowadzone badania potwierdziły konieczność ochrony roztworów substancji badanej przed światłem.

Stability of N-[(morpholine)methylene]daunorubicin (MMD) in aqueous solutions

Department of Pharmaceutical Chemistry Poznan University of Medical Sciences, ul. Grunwaldzka 6, 60-780 Poznań

Anna Krause

Summary

The aim of these studies was to evaluate the stability of MMD in aqueous solutions, intravenous solutions and under the influence of light. Additionally, the kinetic mechanism of MMD degradation in the solid state, the influence of temperature at RH ~76.4% and the influence of relative air humidity at 363 K on the stability of MMD were determined. An HPLC method was used to determine the changes in the concentration of MMD, while a UV-VIS method was used for photodegradation studies.

The separation of MMD in the presence of its degradation products and the internal standard in the HPLC method was obtained using the following parameters:

- column: Chromolith RP-18e, (5 μm) 100 × 4,6 mm, Merck Darmstadt, Germany or LiChrospher 100 RP-18 (5 μm) 125 × 4 mm, Merck Darmstadt, Germany
- mobile phase: mixture (1:1) of solutions A₁ and A₂:
 - \circ solution A1: methanol, acetonitrile (1:9 *V/V*)
 - solution A2: 2.88 g of sodium laurisulfate, 1.6 ml of phosphoric acid (V) (85%), water ad 1000 ml (m/V/V)
- flow rate: 1.0 ml/min
- detector: spekctrophotometer UV, $\lambda = 254$ nm
- internal standard: solution of quinine hydrochloride.

Both methods were validated with regard to selectivity, linearity, precision, limit of detection and limit of quantitation.

The kinetics of MMD degradation was studied in aqueous solutions at 298, 303, 308 and 313 K (pH 0.43–13,71).

The degradation of MMD in aqueous solutions was a pseudo-first-order reaction described by the following equation:

$$\ln c_t = \ln c_0 - k_{obs} \cdot t$$

Investigations of the influence of the total concentrations of buffers at constant pH and ionic strength on the k_{obs} demonstrated that in all buffers only specific acid-base catalysis occurred. Therefore in the whole pH range $k_{obs} = k_{pH}$.

The semilogarithmic relationship $k_{pH} = f(pH)$ indicates that the following reactions occur in aqueous solutions of MMD:

- hydrolysis of the protonated molecules of MMD catalyzed by hydrogen ions
- spontaneous hydrolysis under the influence of water of MMD molecules other than protonated ones

The total rate of the reaction is equal to the sum of partial rates:

$$k_{pH} = k_1 a_{H} f_1 + k_2 f_2$$

The catalytic rate constants k_1 were calculated from the plots $k_{pH}/f_1 = f(a_{H^+})$, which are linear with a positive slope that is equal to k_1 .

The catalytic rate constants k_2 were calculated from the relationship the $k'_{pH} = k_{pH} - k_1 a_H + f_1 = k_2 f_2$. The plots $k'_{pH} = f(f_2)$ at the pH from 4,41 do 7,08, are linear. The values of k'_{pH} for $f_2 = 1$ are equal to k_2 .

The catalytic rate constants were used to calculate the slope of the plots $\ln k_i = f(1/T)$ and the values of $\ln A$ for partial reactions. These values were used to determine the energy of activation and thermodynamic parameters – enthalpy and entropy.

The stability study of MMD in parenteral solutions was conducted at room temperature (24 h), at $2-8^{\circ}$ C (24 h) and at -16° C (30 days). At room temperature the observed rate constants of MMD degradation were determined, taking into consideration type of solution, type of packaging, protection from light and the influence of MMD concentration.

In the stability study of MMD in parenteral solutions at $2-8^{\circ}$ C and at -16° C those solutions in which the loss of substrate concentration did not exceed 10% of the initial concentration were defined as stable.

It was found that MMD demonstrated desired stability under the following conditions:

- at room temperature after 24 h storage in Injectio Glucosi 20%
- at 2–8°C after 6 h storage in 5% Glucosum, Injectio Glucosi 10% and 20% and after 24 h storage in Injectio Glucosi 10% and 20%
- at -16°C after storing for 30 days in Injectio Glucosi 10% and 20%

It was also found that polyethylene ampoules did not protect MMD solutions from light but polypropylene syringes ensured such protection. MMD is susceptible to degradation in the solid state. The kinetic mechanism of its degradation depends on storage conditions. At RH ~76.4% it is the first-order autocatalytic reaction depending on the substrate concentration, while at RH = 0% it is a first-order reaction depending on the substrate concentration.

MMD in aqueous solutions is also susceptible to photodegradation. This process is the first-order reaction. This study confirms the necessity of protecting MMD solutions from light.

Anna Krause "Trwałość N-[(morfolino)metyleno]daunorubicyny w roztworach wodnych"

8. PIŚMIENNICTWO

- 1. Światowy Raport Zdrowia trendy 1995-2025: http://www.poradnikmedyczny.pl/mod/archiwum/10_%C5%9Awiatowy_raport_zdrowia.html
- Chłap Z., pod redakcją Maśliński S., Ryżewski J.: Patofizjologia, dla studentów medycyny PZWL, Warszawa, 1998.
- Kumar V., Cotran R.S., Robbins S.L.: *Robbins Patologia* Wydawnictwo Medyczne Urban & Partner, Wrocław, 2008.
- Zając M., Pawełczyk E., Jelińska A.: *Chemia leków* Wydawnictwo Uczelniane UMiKM, Poznań, 2006.
- Koszarowski T.: Onkologia kliniczna PZWL, Warszawa, 1985.
- 6. Wronkowski Z., Brużewicz S.: *Chemioterapia i radioterapia* PZWL, Warszawa, 2007.
- Madej G.: Chemioterapia onkologiczna dorosłych i dzieci Wydawnictwo Lekarskie PZWL, Warszawa, 1999.
- Orzechowska-Juzwenko K.: *Chemioterapia nowotworów* PZWL, Warszawa, 1990.
- Stańczak A., Ulrichs M.: Leki przeciwnowotworowe. Interkalatory. Farm. Pol. 2006; Tom 62, nr 4.
- Wąsowska M., Oszczapowicz I.: Przeciwdziałanie kardiotoksyczności w terapii przeciwnowotworowej z zastosowaniem antybiotyków antra- cyklinowych. Farm. Pol. 2001; Tom 57, nr 11: 509-515.
- Deptała A., Omyła–Staszewska J., Staszewska–Skurczyńska M.: Kardiotoksyczność antracyklin i kardioprotekcja. Fakty i mity. Współczesna Onkologia 2004; 8: 107-111.
- Armacone F., Anitami F., Capranico G., Lombardi P., Pratesi G., Manzini S., Supino R., Zunino F.: New Development In Antitumor Anthracyclines. Pharmacol. Ther. 1997; 76: 117-124.
- Weiss R.B.: *The anthracyclines: will we ever find a better doxorubicin?* Semin. Oncol. 1992; 19: 670-686.

- Grochow L., Ames M.: *A clinician's guide to chemotherapy – Pharmacokinetics and pharmacodynamics* Williams and Wilkins, Baltimore, 1998.
- Pratt W., Ruddon R., Ensminger W., Maybaum J.: *The Anticancer Drugs* Oxford University Press, Oxford, 1994.
- Wąsowska M., Oszczapowicz I.: Modyfikacje Antybiotyków Antracyklinowych. Farm. Pol. 2004; 60: 587-602.
- 17. Stryer L.: *Biochemia* Wydawnictwo Naukowe PWN, Warszawa, 1999.
- Murray R.K., Granner, D.K., Mayes, P.A., Rodwell, V.W.: Biochemia Harpera PZWL, Warszawa, 2004.
- Hartmann B., Lasery R.: DNA structural forms.
 Q. Rev. Biophys. 1996; 29: 309-368.
- Pullman B.: *Molecular mechanizm of specificity in DNA-antitumor drug interaction*. Adv. Drug Res. 1989; 18: 1-113.
- Quigley G.J., Wang A. H., Ughetto G, van der Marel G., van Boom J.H., Rich A.: *Molecular structure of an anticancer drug-DNA complex.* Proc. Natl. Acad. Sci. USA 1980; 77: 7204-7208.
- 22. Chaires J.B., Fox K.R., Herrera J.E., Britt M., Waring M.J.: Site and sequence specififity of the daunomycin-DNA interaction. Biochemistry 1987; 26: 8227-8236.
- Szuławska A., Czyż M.: Molekularne mechanizmy działania antracyklin. Postępy Hig. Med. Dośw. 2006; 60: 78-100.
- 24. Gale E.F., Cundliffe E., Reynolds P.E., Richmond M.H., Waring M.J.: *The molecular basis of antibiotic action* Wiley, New York, 1981.
- Suh D., Oh Y.K., Hur M.W., Ahn B., Chaires J.B.: Daunomycin binding to deoxypolynucleotides with alternating sequences: complete thermodynamic profiles of heterogeneous binding sites. Nucleosides, Nucleotides and Nucleic Acids 2002; 21: 637-649.
- Gniazdowski M., Szmigiero L.: Molekularne mechanizmy oddziaływania związków przeciwnowotworowych na DNA. Na Pograniczu Chemii i Biologii 2003; 7: 45-73.
- 27. Reinert K.E.: *Anthracycline–binding induced DNA stiffening, bending and elongation; stereochemical implications from viscometric investigations.* Nucleic Acids Res. 1983; 11: 3411-3430.

- Brikenshtein V. Kh., Baranov E. P.: Mechanism of daunorubicin interaction with DNA. Antibiotics and Medicinal Biotechnology 1985; 30: 90-96.
- Cullinane C., Cutts S.M., van Rosmalen A., Phillips D.R.: Formation of adriamycin – DNA adducts In vitro. Nucleic Acids Res. 1994; 22: 2296-2303.
- Leng F., Savkur R., Fokt I., Przewloka T., Priebe W., Chaires J.B.: Base specific and regioselective chemical cross-linking of daunorubicin to DNA. J. American Chem. Soci. 1996; 118: 4731-4739.
- Taatjes D.J., Gaudiano G., Resing K., Koch T.H.: Redox pathway leading to the alkylation of DNA by the anthracycline, antitumor drugs adriamycin and daunomycin. J. Med. Chem. 1997; 40: 1276-1286.
- Van Rosmalen A., Cullinane C., Cutts S.M., Phillips D.R.: Stability of adriamycin-induced DNA adducts and interstrand crosslinks. Nucleic Acids Res. 1995; 23: 42-50.
- Taatjes D.J., Gaudiano G., Koch T.H.: Production of formaldehyde and DNA-adriamycin or DNA—daunomycin adducts, initiated through redox chemistry of dithiothreitol/iron, xanthine, oxidase/NADH/iron, or glutathione/iron. Chem. Res. Toxicol. 1997; 10: 953-961.
- Taatjes D.J., Gaudiano G., Resing K., Koch T.H.: *Alkylation of DNA by the anthracycline, antitumor drugs adriamycin and daunomycin.* J. Med. Chem. 1996; 39: 4135-4138.
- Ścibor-Bentkowska D., Czeczot H.: Komórki nowotworowe a stres oksydacyjny. Postępy Hig. Med. Dosw. 2009; 63: 58-72.
- Vasquez-Vivar J., Martasek P., Hogg N., Masters B.S., Pritchard., K.A. Jr, Kalyanaraman B.: Endothelial nitric oxide synthase-dependent superoxide generation from adriamycin. Biochemistry 1997; 36: 11293-11297.
- Kong Q., Beel J. A., Lillehei K. O.: *A threshold concept for cancer therapy*. Med. Hypotheses 2000; 55: 29-35.
- Dudka J.: Rola reaktywnych form tlenu i azotu w zaburzeniach komórkowej homeostazy wapnia i żelaza w kardiotoksyczności antracyklinowej. Postępy Hig. Med. Dosw. 2006; 60: 241-247.
- Minotti G., Menna P., Salvatorelli E., Cairo G., Gianni L.: Anthracyclines: molecular advances and pharmacologic development In antitumor activity and cardiotoxicity. Pharmacol. Rev. 2004; 56: 185-229.
- 40. Zweier J. L., Gianni L., Muindi J., Myers C. E.: Differences In O₂ reduction by the iron complexes of adriamycin and daunomycin: the importance of the sidechain hydroxyl group. Biochim. Biophys Acta 1986, 884: 326-336.

- Cheeseman K. H., Slater T. F.: An introduction to free radical biochemistry. Br. Med. Bull. 1993; 49: 481-493.
- Simunek T., Sterba M., Popelova O., Adamcova M., Hrdina R., Gersl V.: *Anthracycline-induced cardiotoxicity: Overview of studies examining the roles of oxidative stress and free callular iron.* Pharmacological Reports 2009; 61: 154-171.
- Arola O. J., Saraste A., Pulkki K., Kallajoki M., Parvinen M., Voipio-Pulkki L. M.: *Acute doxorubicin cardiotoxicity involves cardiomyocyte apoptosis*. Cancer Res. 2000; 60: 1789-1792.
- 44. Champion H. C., Skaf M. W., Hare J. M.: *Role of nitric oxide In the pathophysiology of heart failure.* Heart Fail. Rev. 2003; 8: 35-46.
- Granier M. A., Lipshultz S. E.: *Epidemiology of anthracycline cardiotoxicity in children and adults.* Semin. Oncol. 1998; 25 (Supl. 10): 72-85.
- Simmons A., Vacek J. L., Meyers D.: *Anthracycline-Induced Cardiomyopathy*. Postgrad. Med. 2008; 120 (Issue 4): 67-72.
- Perry M.: *The chemotherapy source book* Williams and Wilkins, Baltimore, 1996.
- 48. Gill PS., Wernz J., Scadden DT., Cohen P. Mukwaya GM., Jacobs M.: *Randomized phase III trial of liposomal daunorubicin versus doxorubicin, bleomycin, and vincristine in AIDS – related Kaposi's sarcoma.* J. Clin. Oncol. 1996; 14: 2353–2364.
- Oszczapowicz I., Wąsowska M.: Liposomalne formy antybiotyków antracyklinowych cz. I. Farm. Pol. 1999; 55: 80-85.
- Oszczapowicz I., Wąsowska M.: Liposomalne formy antybiotyków antracyklinowych cz. II. Farm. Pol. 2001; 57: 365-371.
- Wąsowska M., Oszczapowicz I.: Przeciwdziałanie kardiotoksyczności w terapii przeciwnowotworowej z zastosowaniem antybiotyków antra- cyklinowych. Farm. Pol. 2006; 57: 509-515.
- Rabbani A., Finn R. M., Ausio J.: *The anthracycline antibiotics: antitumor drugs that alter chromatin structure*. BioEssays 2004; 27: 50-56.
- 53. Ruiz–Ruiz C., Robledo G., Cano E., Redondo J.M., Lopez–Rivas A.: Characterization of p53–mediated up–regulation of CD95 gene expression upon genotoxic treatment in human breast tumor cells. J. Biol. Chem. 2003; 278: 31667-31675.
- 54. Kastan M.B., Onyekwere O. Sidransky D., Vogelstein B., Craig R. W.: *Participation of p53 protein In the cellular response to DNA damage*. Cancer Res. 1991; 51: 6304-6311.

- Singer B.: Fidelity In transcription assessed by DNA – dependent RNA polymerases. Biochimie 1982; 64: 599-601.
- Binaschi M., Farinosi R., Austin C.A., Fisher L.M., Zunino F., Capranico G.: Human DNA topoisomerase II alpha – dependent DNA cleavage and yeast killing by anthracycline analogues. Cancer Res. 1998; 58: 1886-1892.
- 57. Guano F., Pourquier P., Tinelli S., Binaschi M., Bigioni M., Animati F., Manzini S., Zunino F., Kohlhagen G., Pommier Y., Capranico G.: *Topoisomerase poisoning activity of novel disaccharide anthracyclines*. Mol. Pharmacol. 1999; 56: 77-84.
- Binaschi M., Bigioni M., Cipollone A., Rossi C., Goso C., Maggi C. A., Capranico G., Animati F.: *Anthracyclines: Selected New Developments*. Curr. Med. Chem. – Anti-Cancer Agents 2001; 1: 113-130.
- Bachur N. R., Yu F., Johnson R., Hickey R., Wu Y., Malkas L.: Helikase inhibition by anthracyclines anticancer agents. Mol. Pharmacol, 1992; 41: 993-998.
- Grynkiewicz G., Achmatowicz O., Fokt I., Priebe W., Ramza J., Szechner B., Szeja W.: Synteza naturalnych i modyfikowanych antybiotyków antracyklinowych ze wspólnego prekursora: 3,4-di-O-acetylo-L-ramnalu. Wiad. Chem. 2002; 56: 535-560.
- Portugal J., Cashman D. J., Trent J. O., Ferrer Miralles N., Przewloka T., Fokt I., Priebe W., Chaires J. B.: *A new bisintercalating anthracycline with picomolar DNA binding affinity*. J. Med. Chem. 2005; 48: 8209–8219.
- Animati F., Arcamone F., Bigioni M., Capranico G., Caserini C., De Cesare M., Lombardi P., Pratesi G., Salvatore C., Supino R., Zunino F.: *Biochemical and pharmacological activity of novel 8- fluoroanthracyclines: influence of stereochemistry and conformation.* Mol. Pharmacol. 1996; 50: 603-609.
- Arcamone F., Animati F., Bigioni M., Capranico G., Caserini C., Cipollone A., De Cesare M., Ettorre A., Guano F., Manzini S., Monteagudo E., Pratesi G., Salvatore C., Supino R., Zunino F.: *Configurational requirements of the sugar moiety for the pharmacological activity of anthracycline disaccharides*. Biochem. Pharmacol. 1999; 57: 1133-1139.
- Rho Y., Kim W., Park S., Yoo D., Kang H., Chung S.: Synthesis and Antitumor Activity of New Anthracycline Analogues. Bull. Korean Chem. Soc. 2001; 22: 963-968.
- Zagotto G., Gatto B., Moro S., Sissi J., Palumbo M.: *Anthracyclines: recent developments in their separation and quantitation*. J. Chromatogr. 2001; 76: 161-171.
- Madej J., Dzimira S., Wąsowska M.: New derivatives of anthracycline antibiotics with lower cardiotoxity. J. Chemother. 2004; 16: 154-158.
- 67. Ripamonti M., Capolongo L., Melegaro G., Gornati C., Bargiotti A., Caruso M., Grandi M., Suarato A.: *Morpholinylanthracyclines: cytotoxicity and antitumor activity of differently modified derivatives.* Invest. New Drugs 1996; 14: 139-146.

- Wąsowska M., Wietrzyk J., Opolski A., Oszczapowicz J., Oszczapowicz I.: *Effect of the structural modifications of the anthracycline on the ability to overcome drug resistance of cancer cells.* Anticancer Res. 2006; 26: 2009-2012.
- Ciesielska E., Studzian K., Wąsowska M., Oszczapowicz I., Szmigiero L.: Cytotoxicity cellular uptake and DNA damage by daunorubicine and its new analogues with modified daunosamine moiety. Cell Biol. Toxicol. 2005; 21: 139-147.
- Shadle S. E., Bammel B. P., Cusack B. J., Knighton R. A., Olson S. J., Mushlin P. S., Olson R. D.: Daunorubicin cardiotoxicity: evidence for the importance of the quinone moiety in a freeradicalindependent mechanism. Biochem. Pharmacol. 2000; 60: 1435–1444.
- Piestrzeniewicz M. K., Wilmańska D., Szemraj J., Studzian K., Gniazdowski M.: *Interactions of Novel Morpholine and Hexamethylene Derivatives of Anthracycline Antibiotic with DNA Z.* Naturforsch 2004; 59 c: 739-748.
- 72. Wąsowska M., Oszczapowicz I., Wietrzyk J., Opolski A., Madej J., Dzimira S., Oszczapowicz J.: *Influence of the structure of new anthracycline antibiotics on their biological properties.* Anticancer Res. 2005; 25: 2043-2048.
- 73. Opolski A., Wąsowska M., Wietrzyk J., Nasulewicz A., Oszczapowicz J., Oszczapowicz I.: *Properties of new anthracycline derivatives, containing modified daunosamine moiety.* Eur. J. Cancer 2002; 38: 47-51.
- 74. Streeter D.G., Taylor D.L., Acton E.M., Peters J.H.: *Comparative cytotoxicities of various morpholinyl anthracyclines*. Cancer Chemother. Pharmacol. 1985; 14:169.
- 75. Carter S., Bakowski M., Hellmann K.: *Chemotherapy of cancer* Wiley and Sons, New York, 1981.
- 76. Danesi R., Fogli S., Gennari A., Conte P., Del Tacca M.: *Pharmacokinetic-pharmacodynamic relationships of the anthracycline anticancer drugs*. Clin. Pharmacokinet. 2002; 41: 431–444.
- Chu E., De Vita V. T.: *Physicians' Cancer Chemotherapy Drug Manual 2010* Jones and Bartlett, Sudbury, 2010.
- Weinstein H.J., Mayer R.J., Rosenthal D.S., Camitta B., Coral F.S., Nathan D.G., Frei E.: *Treatment of acute myelogenous leukemia in children and adults*. N Engl. J. Med. 1980; 303:472.
- Bachur N.R., Huffman H.: Daunorubicin metabolism: estimation of daunorubicin reductase. Br. J. Pharmac. 1971; 43: 828-833.
- Mross K., Maessen P., van der Vijgh W.J., Gall H., Boven E., Pinedo H.M.: *Pharmacokinetics and metabolism of epidoxorubicin and doxorubicin in humans*. J. Clin. Oncol. 1998; 6: 517-526.
- 81. Skovsgaard T.

Pharmacodynamic aspects of aclarubicin with special reference to daunorubicin and doxorubicin. European Journal of Haematology 1987; 38: 7-20.

- Machover D., Gastiaburu J., Delgado M., Goldschmidt E., Hulhoven R., Misset J., De Vassal F., Tapiero H., Ribaud P., Schwarzenberg L.: *Phase I-II study of aclarubicin for treatment of acute myeloid leukemia*. Cancer Treat. Rep. 1984; 68: 881-886.
- Macchiarini P., Danesi R., Mariotti R., Marchetti A., Fazzi P., Bevilacqua G., Mariani M., Giuntini C., Del Tacca M., Angeletti C.A.: *Phase II study of high-dose epirubicin in untreated patients with small-cell lung cancer*. Am. J. Clin. Oncol. 1990; 13: 302-307.
- 84. Camaggi C.M., Strocchi E., Carisi P., Martoni A., Melotti B., Pannuti F.: Epirubicin metabolism and pharmacokinetics after conventional- and high-dose intravenous administration: a cross-over study. Cancer Chemother. Pharmacol. 1993; 32: 301-309.
- Camaggi C. M., Strocchi E., Carisi P., Martoni A., Tononi A., Guaraldi M., Strolin-Benedetti M., Efthymiopoulos C., Pannuti F.: *Idarubicin metabolism and pharmacokinetics after intravenous and oral administration in cancer patients: a crossover study*. Cancer Chemoth. Pharmacol. 1992; 30: 307-316.
- Arlin Z.A.: Idarubicin in acute leukemia: an effective new therapy for the future. Semin. Oncol. 1989; 16: 35-36.
- Robert J., David M., Huet S., Chauvergne J.: *Pharmacokinetics and metabolism of pirarubicin in advanced cancer patients*. Eur. J. Cancer Clin. Oncol. 1988; 24(8): 1289-1294.
- Monneret C.: *Recent developments in the field of antitumour anthracyclines.* Eur. J. Med. Chem. 2001; 36: 483–493.
- Pawełczyk E., Hermann T.: Podstawy trwałości leków PZWL, Warszawa, 1982.
- 90. Carstensen J.T., Rhodes C.T.: Drug Stability, Principles and Practices Marcel Dekker, New York, 2000.
- 91. Glass B.D., Novak c., Brown M.E.: The thermal and photostability of solid pharmaceuticals: a review.
 J. Therm. Anal. Cal. 2004; 77: 1013-1036.
- 92. ICH Harmonised Tripartite Guideline, Stability Testing of New Drug Substances and Products, Q1A.
- 93. Sędłak A.: Badania fotostabilności nowych substancji. Przemysł Farmaceutyczny 2009; 6 (436): 72-73.
- 94. Mielcarek J., Grobelny P., Osmałek T.: *Trwałość fotochemiczna substancji leczniczych i gotowych postaci leku - temat coraz bardziej aktualny*. Farm. Pol. 2005; 61: 1058-1064.
- 95. Mielcarek J., Grobelny P., Osmałek T.: Trwałość fotochemiczna substancji leczniczych i gotowych postaci leków. Cz. 2. Sposoby oceny fotowrażliwości leków i ochrony przed rozkładem. Farm. Pol. 2006; 62: 689-695.

- 96. ICH Harmonised Tripartite Guideline, Photostability Testing of New Drug Substances and Products, Q1B.
- 97. Schellens J.H.M., McLead H.L., Newell D.R.: *Cancer Clinical Pharmacology* Oxford University Press, New York, 2005.
- Bouma J., Beijnen J. H., Bult A., Underberg W. J. M.: *Anthracycline antitumor agents. A review of physicochemical, analytical and stability properties.* Pharmaceutisch Weekblad Scientific Edition 1986; 8: 109–133.
- Dibbern H. W., Wirbitzki E.: UV and IR Spectra of some important drugs. Editio Cantor Aulendorf 1978/1998.
- 100. European Pharmacopeia 6th Edition Council of Europe, 67075 Strasbourg Cedex, France, 2007.
- 101. The United States Pharmacopeia 31 The United States Pharmacopeial Convention, Inc. 12601 Twinbrook Parkway, Rockville, MD 20852, 2008.
- 102. Wood M.J., Irwin W.J., Scott D.K.: Photodegradation of doxorubicin, daunorubicin and epirubicin measured by high-performance liquid chromatography.
 J. Clin. Pharm. Ther. 1990; 15: 291-300.
- 103. Wood M.J., Irwin W.J., Scott D.K.: Stability of doxorubicin, daunorubicin and epirubicin in plastic syringes and minibags. J. Clin. Pharm. Ther. 1990; 15: 279-289.
- 104. Xu Q. A., Trissel L.A.: Stability-Indicating HPLC Methods for Drug Analysis American Pharmaceutical Association Washington, Pharmaceutical Press London, 1999.
- 105. Mills T., Roberson J.C.: Instrumental Data for Drug Analysis CRC Press, Boca Raton, 1993.
- 106. Beijnen J. H., van der Houwen O. A. J. M., Voskuilen M. C. H., Underberg W. J. M.: Aspects of the degradation kinetics of daunorubicin in aqueous solution. Int. J. Pharm. 1986; 1: 75-82.
- 107. Beijnen J.H., Potman R.P., van Doijen R.D., Driebergen R.J., Voskuilen M.C., Renema J., Underberg W.J.M.: *Structure elucidation and characterization of daunorubicin degradation products*. Int. J. Pharm. 1986; 32: 123-131.
- 108. Chevrier R., Sautou V., Pinon V., Demeocq F., Chapineau J.: Stability and compatibility of a mixture of the anti-cancer drugs etoposide, cytarabine and daunorubicine for infusion. Pharm. Acta Helv. 1995; 70: 141-148.
- 109. Beijnen J.H., Rosing H., de Vries P.A., Underberg W.J.M.: Stability of Anthracycline Antitumour Agents in Infusion Fluids. Journal of Parenteral Science and Technology 1985; 39: 220-222.

- 110. Bekers O., Beijnen J.H., Vis B.J., Suenaga A., Otagiri M., Bult A., Underberg W.J.M.: *Effect of cyclodextrin complexation on the chemical stability of doxorubicin and daunorubicin in aqueous solutions.* Int. J. Pharm. 1991; 72: 123-130.
- 111. Seargeant L. E., Kobrinsky N. L., Sus C. J., Nazeravich D. R.: In vitro stability and compatibility of daunorubicin, cytarabine and etoposide. Cancer Treat. Rep. 1987; 71: 1189–1192.
- 112. Dine T., Cazin J.C., Gressier B., Luyckx M., Brunet C., Cazin M., Goudaliez F., Mallevais M.L., Toraub I.: Stability and compatibility of four anthracyclines: doxorubicin, epirubicin, daunorubicin and pirarubicin with PVC infusion bags. Pharmaceutisch Weekblad Scientific 1992; 14: 365-369.
- 113. Poochikian G.K., Cradock J.C., Flora K.P.: Stability of anthracycline antitumor agents In four infusion fluids. American Journal of Hospital Pharmacy1981; 38: 483-486.
- 114. Bolanowska W., Gessner T., Preisler H.: A Simplified Metod for determination of Daunorubicin, Adriamycin, and their Chief Fluorescent Metabolites in Human Plasma by High-Pressure Liquid Chromatography. Cancer Chemother. Pharmacol. 1983; 10: 187-191.
- 115. Beijnen J.H., Meenhorst P.L., Van Gijn R., Fromme M., Rosing H., Underberg W.J.M.: HPLC determination of doxorubicin, doxorubicinol and four aglycone metabolitem In plasma of AIDS patients. J. Pharm. Biomed. Anal. 1991; 9: 995-1002.
- 116. Albrecht K.W., de Witt Hamer P.C., Leenstra S., Bakker P.J.M., Beijnen J.H., Troost D., Kaaijk P., Bosch A.D.:
 High concentration of Daunorubicin and Daunorubicinol in human malignant astrocytomas after systematic administration of liposomal Daunorubicin.

J. Neurooncol. 2001; 53: 267-271.

117. Hulhoven R., Desager J.P.:

Quantitive determination of low levels of daunomycin and daunomycinol in plasma by high-performance liquid chromatography. J. Chromatogr. 1975; 125: 369-374.

- 118. Hulhoven R., Desager J.P.: HPLC determination of daunorubicin and daunorubicinol in human plasma. Biomedicine 1977; 27: 102-104.
- 119. Wąsowska M., Oszczapowicz J., Oszczapowicz I., Owoc A.: Patent C07H 15/252 (2006.01)
- 120. Jelińska A., Zając M., Cielecka-Piontek J., Głąb K., Tomaszewicz B., Krause A., Oszczapowicz I., Wąsowska M.: Validation of a Stability Indicating LC-UV Method for [(N-Morpholine)methylene]daunorubicin Hydrochlorid. Chromatographia 2008; 67: 107-111.
- 121. Krause A., Jelińska A., Cielecka-Piontek J., Zalewski P., Oszczapowicz I., Wąsowska M.: *The influence of pH and temperature on the stability of [(N-morpholine)methylene]daunorubicin.* J. Chem. Scien. (praca w recenzji).
- 122. Zalewski P., Zając M., Jelińska A., Cielecka-Piontek J., Oszczapowicz I.: Stability Study of Anticancer Agent N-[(Hexahydroazepin-1-yl)methyl]daunorubicin In Aqueous Solutions Using HPLC Method. Asian J. Chemistry 2011; 23: 835-838.

- 123. Jelińska A, Uszak J., Cielecka-Piontek J., Zając M, Lamberti A, Oszczapowicz I, Łukawska M.: *Stability of [(N-pyrrolidine)metylene]daunorubicin in aqueous solutions.* React. Kinet. Catal. Lett. 2009; 98: 9-75.
- 124. Cielecka-Piontek J., Jelińska A., Dołhań A., Zalewski P., Burek D., Piekarski M., Krause A., Uszak J., Oszczapowicz I., Łukawska M., Stability of new anticancer agents in intravenous solutions. Asian J. Chemistry – praca przyjęta do druku.
- 125. Yalkowsky S.H., Valvani S.C., Johnson B.W. : In Vitro Method for detecting precipitation of parenteral formulations after injection J. Pharm. Sci. 1983; 72: 1014-1017.
- 126. Zalewski P., Jelińska A., Prusinowska P., Cielecka-Piontek J., Krause A., Oszczapowicz I.: Stability of N-[(morpholine)methylene]daunorubicin hydrochloride in solid state. Acta Polon. Pharm. – praca przyjęta do druku.
- 127. Cielecka-Piontek J., Zając M., Jelińska A.: A comparison of the stability of daunorubicin and doxorubcin in solid state J. Pharm. Biomed. Anal. 2009; 46: 52-57.
- 128. Zalewski P., Jelińska A., Zając M., Cielecka-Piontek J., Piekarski M., Mielcarek J., Krause A., Uszak J., Łukawska M., Oszczapowicz I.: *Photostability of new anticancer agents*.
 J. Pharm. Res. 3(8), s. 1700–1702, 2010.